I Tyngre Radio snackas det om styrketräning. Punkt. Värdar är Alex Danielsson och Andreas Guiance.
…
continue reading
المحتوى المقدم من Danny Lennon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Danny Lennon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
#531: Correlation, Causation & Cliché
MP3•منزل الحلقة
Manage episode 432754005 series 2461191
المحتوى المقدم من Danny Lennon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Danny Lennon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
In the realm of nutrition science and health, understanding the intricate relationship between various factors and health outcomes is crucial yet challenging. How do we determine whether a specific nutrient genuinely impacts our health, or if the observed effects are merely coincidental? This intriguing question brings us to the core concepts of correlation and causation. You’ve likely heard the adage “correlation is not causation,” but what does this truly mean in the context of scientific research and public health recommendations? Can a strong association between two variables ever imply a causal relationship, or is it always just a statistical coincidence? These questions are not merely academic; they are pivotal in shaping the guidelines that influence our daily lives. For instance, when studies reveal a link between high sodium intake and hypertension, how do scientists distinguish between a mere correlation and a true causal relationship? Similarly, the debate around LDL cholesterol and cardiovascular disease hinges on understanding whether high cholesterol levels directly cause heart disease, or if other confounding factors are at play. Unraveling these complexities requires a deep dive into the standards of proof and the different models used to assess causality in scientific research. As we delve into these topics, we’ll explore how public health recommendations are formed despite the inherent challenges in proving causality. What methods do scientists use to ensure that their findings are robust and reliable? How do they account for the myriad of confounding variables that can skew results? By understanding the nuances of these processes, we can better appreciate the rigorous scientific effort that underpins dietary guidelines and health advisories. Join us on this exploration of correlation, causation, and the standards of proof in nutrition science. Through real-world examples and critical discussions, we will illuminate the pathways from observational studies to actionable health recommendations. Are you ready to uncover the mechanisms that bridge the gap between scientific evidence and practical health advice? Let’s dive in and discover the fascinating dynamics at play. Timestamps:
…
continue reading
- 01:32 Understanding Correlation and Causation
- 03:54 Historical Perspectives on Causality
- 06:33 Causal Models in Health Sciences
- 14:53 Probabilistic vs. Deterministic Causation
- 30:52 Standards of Proof in Public Health
- 36:44 Applying Causal Models in Nutrition Science
- 58:54 Key Ideas Segment (Premium-only)
- Enroll in the next cohort of our Applied Nutrition Literacy course
- Go to episode page
- Subscribe to Sigma Nutrition Premium
- Receive our free weekly email: the Sigma Synopsis
- Related episode: 343 – Understanding Causality in Nutrition Science
547 حلقات
MP3•منزل الحلقة
Manage episode 432754005 series 2461191
المحتوى المقدم من Danny Lennon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Danny Lennon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
In the realm of nutrition science and health, understanding the intricate relationship between various factors and health outcomes is crucial yet challenging. How do we determine whether a specific nutrient genuinely impacts our health, or if the observed effects are merely coincidental? This intriguing question brings us to the core concepts of correlation and causation. You’ve likely heard the adage “correlation is not causation,” but what does this truly mean in the context of scientific research and public health recommendations? Can a strong association between two variables ever imply a causal relationship, or is it always just a statistical coincidence? These questions are not merely academic; they are pivotal in shaping the guidelines that influence our daily lives. For instance, when studies reveal a link between high sodium intake and hypertension, how do scientists distinguish between a mere correlation and a true causal relationship? Similarly, the debate around LDL cholesterol and cardiovascular disease hinges on understanding whether high cholesterol levels directly cause heart disease, or if other confounding factors are at play. Unraveling these complexities requires a deep dive into the standards of proof and the different models used to assess causality in scientific research. As we delve into these topics, we’ll explore how public health recommendations are formed despite the inherent challenges in proving causality. What methods do scientists use to ensure that their findings are robust and reliable? How do they account for the myriad of confounding variables that can skew results? By understanding the nuances of these processes, we can better appreciate the rigorous scientific effort that underpins dietary guidelines and health advisories. Join us on this exploration of correlation, causation, and the standards of proof in nutrition science. Through real-world examples and critical discussions, we will illuminate the pathways from observational studies to actionable health recommendations. Are you ready to uncover the mechanisms that bridge the gap between scientific evidence and practical health advice? Let’s dive in and discover the fascinating dynamics at play. Timestamps:
…
continue reading
- 01:32 Understanding Correlation and Causation
- 03:54 Historical Perspectives on Causality
- 06:33 Causal Models in Health Sciences
- 14:53 Probabilistic vs. Deterministic Causation
- 30:52 Standards of Proof in Public Health
- 36:44 Applying Causal Models in Nutrition Science
- 58:54 Key Ideas Segment (Premium-only)
- Enroll in the next cohort of our Applied Nutrition Literacy course
- Go to episode page
- Subscribe to Sigma Nutrition Premium
- Receive our free weekly email: the Sigma Synopsis
- Related episode: 343 – Understanding Causality in Nutrition Science
547 حلقات
كل الحلقات
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.