Artwork

المحتوى المقدم من Karlsruher Institut für Technologie (KIT). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Karlsruher Institut für Technologie (KIT) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

18: Wahrscheinlichkeitstheorie, Vorlesung, SS 2016, am 11.07.2016

1:26:23
 
مشاركة
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754108 series 1602822
المحتوى المقدم من Karlsruher Institut für Technologie (KIT). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Karlsruher Institut für Technologie (KIT) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
18 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung wichtiger Begriffe und Resultate von Lektion 17 0:04:14 Diskussion (Filtration, Adaptiertheit, Stoppzeit) 0:10:19 Charakterisierung einer Stoppzeit 0:13:35 Summen, Maxima und Minima von Stoppzeiten sind Stoppzeiten 0:15:09 Beispiele für Stoppzeiten (Ersteintrittszeiten, konstante Stoppzeit) 0:21:24 Sigma-Algebra der tau-Vergangenheit 0:24:57 Satz (Messbarkeit einer gestoppten Zufallsvariablen) 0:30:10 Beispiel (Stoppen in einem Urnenmodell) 0:40:59 Submartingal, Supermartingal, Martingal 0:45:35 Interpretation (Submartingal, Supermartingal, Martingal) 0:49:00 Monotonie bzw, Konstanz der Folge (E(X_n)) bei Sub- bzw. Supermartingal und Martingal 0:51:43 Test eines Sub- bzw. Supermartingals auf ein Martingal 0:55:25 Beispiel: Partialsummen unabhängiger Zufallsvariablen 0:59:43 Beispiel: (Partial-)Produkte unabhängiger Zufallsvariablen 1:03:30 Das Doobsche Martingal 1:07:26 Prävisible (vorhersagbare) Folge 1:09:49 Beispiel 1:11:27 Ein vorhersagbares Martingal ist mit Wahrscheinlichkeit 1 konstant 1:13:35 Die Doob-Zerlegung
  continue reading

20 حلقات

Artwork
iconمشاركة
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754108 series 1602822
المحتوى المقدم من Karlsruher Institut für Technologie (KIT). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Karlsruher Institut für Technologie (KIT) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
18 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung wichtiger Begriffe und Resultate von Lektion 17 0:04:14 Diskussion (Filtration, Adaptiertheit, Stoppzeit) 0:10:19 Charakterisierung einer Stoppzeit 0:13:35 Summen, Maxima und Minima von Stoppzeiten sind Stoppzeiten 0:15:09 Beispiele für Stoppzeiten (Ersteintrittszeiten, konstante Stoppzeit) 0:21:24 Sigma-Algebra der tau-Vergangenheit 0:24:57 Satz (Messbarkeit einer gestoppten Zufallsvariablen) 0:30:10 Beispiel (Stoppen in einem Urnenmodell) 0:40:59 Submartingal, Supermartingal, Martingal 0:45:35 Interpretation (Submartingal, Supermartingal, Martingal) 0:49:00 Monotonie bzw, Konstanz der Folge (E(X_n)) bei Sub- bzw. Supermartingal und Martingal 0:51:43 Test eines Sub- bzw. Supermartingals auf ein Martingal 0:55:25 Beispiel: Partialsummen unabhängiger Zufallsvariablen 0:59:43 Beispiel: (Partial-)Produkte unabhängiger Zufallsvariablen 1:03:30 Das Doobsche Martingal 1:07:26 Prävisible (vorhersagbare) Folge 1:09:49 Beispiel 1:11:27 Ein vorhersagbares Martingal ist mit Wahrscheinlichkeit 1 konstant 1:13:35 Die Doob-Zerlegung
  continue reading

20 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل