Artwork

المحتوى المقدم من Barbara Bredner. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Barbara Bredner أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

#45 Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

21:57
 
مشاركة
 

Manage episode 322931043 series 2924427
المحتوى المقدم من Barbara Bredner. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Barbara Bredner أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
warum "normal-verteilt" eher nicht normal ist

Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

👉 Warum ist das Ergebnis nicht normal-verteilt?
👉 Wie funktionieren verallgemeinerte lineare Modelle (GLM: Generalized Linear Models)?
👉 Sind Machine Learning Modelle auch GLMs?

Die Normalverteilung von Messwerten wird für viele Methoden vorausgesetzt und sie scheint oft "das Normalste" von der Welt zu sein - bis echte Messwerte aufgenommen werden. Die sind selten normalverteilt und damit stellt sich schnell die Frage, warum die Messwerte nicht aus einer "normalen" Verteilung kommen.

Mögliche Antworten darauf erhalten Sie in der aktuellen Folge. Außerdem geht es darum, wie Auswertungen bei nicht-normalverteilten Messdaten z. B. mit GLMs funktionieren und wie die verallgemeinerten linearen Modelle mit den Methoden des maschinellen Lernens zusammenhängen.

Links

👉 Hilbe, S. (2010) "Generalized Linear Models", Encyclopedia of Mathematics
👉 Great Learnings Team (2021) "Generalized Linear Model | What does it mean?"
👉 Clark, M. (2019) "Generalized Additive Models"

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, post@irgendwas-mit-daten.io

  continue reading

51 حلقات

Artwork
iconمشاركة
 
Manage episode 322931043 series 2924427
المحتوى المقدم من Barbara Bredner. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Barbara Bredner أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
warum "normal-verteilt" eher nicht normal ist

Wie funktioniert Einfluss-Analyse bei nicht-normalverteilten Ergebnissen?

👉 Warum ist das Ergebnis nicht normal-verteilt?
👉 Wie funktionieren verallgemeinerte lineare Modelle (GLM: Generalized Linear Models)?
👉 Sind Machine Learning Modelle auch GLMs?

Die Normalverteilung von Messwerten wird für viele Methoden vorausgesetzt und sie scheint oft "das Normalste" von der Welt zu sein - bis echte Messwerte aufgenommen werden. Die sind selten normalverteilt und damit stellt sich schnell die Frage, warum die Messwerte nicht aus einer "normalen" Verteilung kommen.

Mögliche Antworten darauf erhalten Sie in der aktuellen Folge. Außerdem geht es darum, wie Auswertungen bei nicht-normalverteilten Messdaten z. B. mit GLMs funktionieren und wie die verallgemeinerten linearen Modelle mit den Methoden des maschinellen Lernens zusammenhängen.

Links

👉 Hilbe, S. (2010) "Generalized Linear Models", Encyclopedia of Mathematics
👉 Great Learnings Team (2021) "Generalized Linear Model | What does it mean?"
👉 Clark, M. (2019) "Generalized Additive Models"

Schreiben Sie mir!

Ich freue mich über Ihre Nachricht! Barbara Bredner, post@irgendwas-mit-daten.io

  continue reading

51 حلقات

Semua episode

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل