انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
Q&A - Double Flares - Short #225
Manage episode 459787217 series 2997090
In this short podcast episode, Bryan answers a listener-submitted question about double flares and their application in the HVAC/R industry.
Flare connections are common in certain types of equipment, and they connect the copper to the appliance. As a result, when we make a flare, our goal is to make it leak-free. A regular flare requires you to cut the copper, clean it, put the flare nut on, and make the flare with a flaring block (or a flaring tool). You can also put a little bit of oil on the flare cone to prevent galling. Modern power flaring tools are common nowadays, especially in markets where we install a lot of mini-splits. We also use torque wrenches to tighten the flare connection according to the manufacturer's specs.
In mission-critical applications where we have toxic or flammable refrigerants under high pressure, we especially want leak-free connections. Double flares make more sense in these scenarios for extra security (though we may use different connection types). A double flare requires you to use a double-flare die that flares over the edge, though those double-flare dies are more common in older flaring kits and may not exist for power tools or spin tools.
Double flares are usually less practical than other alternatives that exist on the market. For example, some manufacturers make flare gaskets to reduce the likelihood of leaks, and these are functionally similar to a double flare.
Have a question that you want us to answer on the podcast? Submit your questions at https://www.speakpipe.com/hvacschool.
Purchase your tickets or learn more about the 6th Annual HVACR Training Symposium at https://hvacrschool.com/symposium. Subscribe to our podcast on your iPhone or Android. Subscribe to our YouTube channel. Check out our handy calculators here or on the HVAC School Mobile App for Apple and Android
764 حلقات
Manage episode 459787217 series 2997090
In this short podcast episode, Bryan answers a listener-submitted question about double flares and their application in the HVAC/R industry.
Flare connections are common in certain types of equipment, and they connect the copper to the appliance. As a result, when we make a flare, our goal is to make it leak-free. A regular flare requires you to cut the copper, clean it, put the flare nut on, and make the flare with a flaring block (or a flaring tool). You can also put a little bit of oil on the flare cone to prevent galling. Modern power flaring tools are common nowadays, especially in markets where we install a lot of mini-splits. We also use torque wrenches to tighten the flare connection according to the manufacturer's specs.
In mission-critical applications where we have toxic or flammable refrigerants under high pressure, we especially want leak-free connections. Double flares make more sense in these scenarios for extra security (though we may use different connection types). A double flare requires you to use a double-flare die that flares over the edge, though those double-flare dies are more common in older flaring kits and may not exist for power tools or spin tools.
Double flares are usually less practical than other alternatives that exist on the market. For example, some manufacturers make flare gaskets to reduce the likelihood of leaks, and these are functionally similar to a double flare.
Have a question that you want us to answer on the podcast? Submit your questions at https://www.speakpipe.com/hvacschool.
Purchase your tickets or learn more about the 6th Annual HVACR Training Symposium at https://hvacrschool.com/symposium. Subscribe to our podcast on your iPhone or Android. Subscribe to our YouTube channel. Check out our handy calculators here or on the HVAC School Mobile App for Apple and Android
764 حلقات
كل الحلقات
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.