Artwork

المحتوى المقدم من MapScaping. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة MapScaping أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Telematics Data is Reshaping Our Understanding of Road Networks

58:52
 
مشاركة
 

Manage episode 460092900 series 2502116
المحتوى المقدم من MapScaping. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة MapScaping أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

241 حلقات

Artwork
iconمشاركة
 
Manage episode 460092900 series 2502116
المحتوى المقدم من MapScaping. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة MapScaping أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Telematics Data is Reshaping Our Understanding of Road Networks

In this episode MIT Professor Hari Balakrishnan explains how Cambridge Mobile Telematics (CMT) is transforming traditional road network analysis by layering dynamic behavioural data onto static map geometries.

Telematics data creates "living maps" that go beyond traditional road geometry and attributes. By collecting movement data from 45 million users through phones and IoT devices, CMT has developed sophisticated models that can:

- Generate dynamic risk maps showing crash probability for every road segment globally
- Detect infrastructure issues that aren't visible in traditional mapping (like poorly placed bus stops)
- Validate and correct map attributes like speed limits and lane connectivity
- Differentiate between overpasses and intersections using movement patterns
- Create contextual understanding of road segments based on actual usage patterns

Particularly interesting for GIS professionals is CMT's approach to data fusion, combining traditional map geometry with temporal movement data to create predictive models. This has practical applications from infrastructure planning to autonomous vehicle navigation, where understanding the cultural context of road usage proves as important as precise geometry.

The episode challenges traditional static approaches to road network mapping, suggesting that the future lies in dynamic, behavior-informed spatial data models that can adapt to changing conditions and usage patterns.

For anyone working with transportation networks or smart city initiatives, this episode provides valuable insights into how movement data is changing our understanding of road infrastructure and spatial behaviour.

Connect with Hari on LinkedIn!

https://www.linkedin.com/in/hari-balakrishnan-0702263/

Cambridge Mobile Telematics

https://www.cmtelematics.com/

BTW, I keep busy creating free mapping tools and publishing them there

https://mapscaping.com/map-tools/ swing by and take a look!

  continue reading

241 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل