Artwork

المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

CSE805L18 - Exploring Support Vector Machines, Feature Extraction, and Model Pipelines

21:27
 
مشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159376 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode, Eugene Uwiragiye guides listeners through the essential concepts of Support Vector Machines (SVMs), feature extraction, and how to automate machine learning workflows using pipelines.

Key Topics:

  1. Introduction to Support Vector Machines (SVM)
    • Overview of SVMs and their variations, including the Support Vector Regression (SVR).
    • Discussion of SVM’s use in regression and classification tasks.
  2. Housing Dataset Example
    • Using a common housing dataset to demonstrate the application of machine learning models.
    • Importance of clean data for building robust models, assuming data preprocessing like missing value removal is already handled.
  3. Model Workflow Overview
    • Steps involved in developing machine learning models: importing necessary libraries, defining the model, preparing and cleaning data.
    • Introduction to metrics for model evaluation: Accuracy, MCC (Matthews Correlation Coefficient), specificity, sensitivity, and Area Under the Curve (AUC).
  4. Feature Selection and Extraction
    • Difference between feature extraction (identifying key data features, like shapes or colors in images) and feature selection (choosing the most important features for the model).
    • Tools and techniques for feature extraction and selection, including PCA (Principal Component Analysis) and KBest method.
  5. Automating Machine Learning with Pipelines
    • Introduction to machine learning pipelines and how they streamline workflows by automating tasks like data scaling, feature selection, and model fitting.
    • Using pipelines to avoid manual scaling and data preprocessing during model training.
  6. Combining Models and Features
    • How to combine different feature extraction techniques (PCA, KBest) with models (e.g., Logistic Regression) into a single pipeline for efficient training and evaluation.
    • Discussion of dimensionality reduction to optimize model performance when dealing with high-dimensional datasets.
  7. Feature Engineering and Model Tuning
    • Importance of feature engineering in extracting meaningful data for models, particularly in fields like image processing and genomic data.
    • Explanation of cross-validation (K-fold) and how it is applied to assess model accuracy and generalization ability.
  8. Ensemble Learning (Preview)
    • Teaser for the next episode, focusing on ensemble learning techniques and their role in improving model performance by combining multiple models.

Key Takeaways:

  • SVMs and SVR are powerful tools for regression and classification, widely used in various domains.
  • Feature extraction is critical for machine learning applications, especially when working with complex data types like images and genomic sequences.
  • Pipelines are essential for automating repetitive tasks in machine learning workflows, ensuring efficient data scaling, feature extraction, and model fitting.
  • Always be mindful of data preprocessing, model evaluation metrics, and the importance of cross-validation when training machine learning models.

Tools Mentioned:

  • PCA (Principal Component Analysis): Used for dimensionality reduction and feature selection.
  • KBest: A method for selecting the top K features.
  • Machine Learning Pipelines: Streamline workflows, particularly in Python’s scikit-learn library.

Resources:

  • Housing Dataset: Available through open-source platforms and books on machine learning.
  • Python Libraries: scikit-learn for pipelines, model evaluation, and feature extraction.

Tune in next time for a deep dive into ensemble learning and advanced machine learning techniques!

  continue reading

20 حلقات

Artwork
iconمشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159376 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode, Eugene Uwiragiye guides listeners through the essential concepts of Support Vector Machines (SVMs), feature extraction, and how to automate machine learning workflows using pipelines.

Key Topics:

  1. Introduction to Support Vector Machines (SVM)
    • Overview of SVMs and their variations, including the Support Vector Regression (SVR).
    • Discussion of SVM’s use in regression and classification tasks.
  2. Housing Dataset Example
    • Using a common housing dataset to demonstrate the application of machine learning models.
    • Importance of clean data for building robust models, assuming data preprocessing like missing value removal is already handled.
  3. Model Workflow Overview
    • Steps involved in developing machine learning models: importing necessary libraries, defining the model, preparing and cleaning data.
    • Introduction to metrics for model evaluation: Accuracy, MCC (Matthews Correlation Coefficient), specificity, sensitivity, and Area Under the Curve (AUC).
  4. Feature Selection and Extraction
    • Difference between feature extraction (identifying key data features, like shapes or colors in images) and feature selection (choosing the most important features for the model).
    • Tools and techniques for feature extraction and selection, including PCA (Principal Component Analysis) and KBest method.
  5. Automating Machine Learning with Pipelines
    • Introduction to machine learning pipelines and how they streamline workflows by automating tasks like data scaling, feature selection, and model fitting.
    • Using pipelines to avoid manual scaling and data preprocessing during model training.
  6. Combining Models and Features
    • How to combine different feature extraction techniques (PCA, KBest) with models (e.g., Logistic Regression) into a single pipeline for efficient training and evaluation.
    • Discussion of dimensionality reduction to optimize model performance when dealing with high-dimensional datasets.
  7. Feature Engineering and Model Tuning
    • Importance of feature engineering in extracting meaningful data for models, particularly in fields like image processing and genomic data.
    • Explanation of cross-validation (K-fold) and how it is applied to assess model accuracy and generalization ability.
  8. Ensemble Learning (Preview)
    • Teaser for the next episode, focusing on ensemble learning techniques and their role in improving model performance by combining multiple models.

Key Takeaways:

  • SVMs and SVR are powerful tools for regression and classification, widely used in various domains.
  • Feature extraction is critical for machine learning applications, especially when working with complex data types like images and genomic sequences.
  • Pipelines are essential for automating repetitive tasks in machine learning workflows, ensuring efficient data scaling, feature extraction, and model fitting.
  • Always be mindful of data preprocessing, model evaluation metrics, and the importance of cross-validation when training machine learning models.

Tools Mentioned:

  • PCA (Principal Component Analysis): Used for dimensionality reduction and feature selection.
  • KBest: A method for selecting the top K features.
  • Machine Learning Pipelines: Streamline workflows, particularly in Python’s scikit-learn library.

Resources:

  • Housing Dataset: Available through open-source platforms and books on machine learning.
  • Python Libraries: scikit-learn for pipelines, model evaluation, and feature extraction.

Tune in next time for a deep dive into ensemble learning and advanced machine learning techniques!

  continue reading

20 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل