Artwork

المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

CSE805L17 - Understanding Support Vector Machines (SVM) and Hyperplanes

6:59
 
مشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159375 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Key Topics Covered:

  1. Introduction to Algorithms in Machine Learning
    • Overview of how algorithms are modified and adapted over time.
    • Importance of reading research papers to stay updated with advancements.
  2. Introduction to Support Vector Machines (SVM)
    • Definition of SVM and its significance in machine learning, especially for classification tasks.
    • Historical context: First proposed in 1963, with significant improvements made in the 1990s.
  3. Linear Separability and Hyperplanes
    • Explanation of what it means for data points to be linearly separable.
    • Introduction to hyperplanes and their role in separating data in higher dimensions.
  4. Support Vectors and Margins
    • Explanation of support vectors: critical data points that determine the position of the hyperplane.
    • Discussion on maximizing the margin between different classes for better classification accuracy.
  5. SVM vs Neural Networks
    • Comparison between SVMs and neural networks, particularly in terms of the use of kernel (activation) functions.
    • Introduction to the sigmoid function in neural networks and its relation to logistic regression.
  6. Optimizing Hyperplanes
    • How SVM finds the best separating hyperplane by maximizing the margin between classes.
    • Discussion on the importance of slope and intercept in determining hyperplanes.
  7. Kernel Functions
    • The role of kernel functions in SVM for dealing with non-linear data.
    • Brief overview of common kernel functions like linear, polynomial, and RBF (Radial Basis Function).
  8. Practical SVM Application
    • How to implement SVM in practical scenarios using libraries such as Scikit-Learn.
    • Introduction to parameters such as the regularization parameter (C) and choosing appropriate kernel functions.

Key Takeaways:

  • SVM is a powerful tool for classification, especially when data is linearly separable.
  • The key to SVM’s effectiveness lies in finding the optimal hyperplane by maximizing the margin between classes.
  • Understanding the role of support vectors and kernel functions is crucial for effectively applying SVM.
  • SVM shares similarities with neural networks, especially in the use of kernel functions for classification.

Recommended Resources:

  • Scikit-Learn Documentation: Link
  • Further Reading on Kernel Methods in SVM: Explore Radial Basis Functions (RBF) and their application in classification tasks.
  continue reading

20 حلقات

Artwork
iconمشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159375 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Key Topics Covered:

  1. Introduction to Algorithms in Machine Learning
    • Overview of how algorithms are modified and adapted over time.
    • Importance of reading research papers to stay updated with advancements.
  2. Introduction to Support Vector Machines (SVM)
    • Definition of SVM and its significance in machine learning, especially for classification tasks.
    • Historical context: First proposed in 1963, with significant improvements made in the 1990s.
  3. Linear Separability and Hyperplanes
    • Explanation of what it means for data points to be linearly separable.
    • Introduction to hyperplanes and their role in separating data in higher dimensions.
  4. Support Vectors and Margins
    • Explanation of support vectors: critical data points that determine the position of the hyperplane.
    • Discussion on maximizing the margin between different classes for better classification accuracy.
  5. SVM vs Neural Networks
    • Comparison between SVMs and neural networks, particularly in terms of the use of kernel (activation) functions.
    • Introduction to the sigmoid function in neural networks and its relation to logistic regression.
  6. Optimizing Hyperplanes
    • How SVM finds the best separating hyperplane by maximizing the margin between classes.
    • Discussion on the importance of slope and intercept in determining hyperplanes.
  7. Kernel Functions
    • The role of kernel functions in SVM for dealing with non-linear data.
    • Brief overview of common kernel functions like linear, polynomial, and RBF (Radial Basis Function).
  8. Practical SVM Application
    • How to implement SVM in practical scenarios using libraries such as Scikit-Learn.
    • Introduction to parameters such as the regularization parameter (C) and choosing appropriate kernel functions.

Key Takeaways:

  • SVM is a powerful tool for classification, especially when data is linearly separable.
  • The key to SVM’s effectiveness lies in finding the optimal hyperplane by maximizing the margin between classes.
  • Understanding the role of support vectors and kernel functions is crucial for effectively applying SVM.
  • SVM shares similarities with neural networks, especially in the use of kernel functions for classification.

Recommended Resources:

  • Scikit-Learn Documentation: Link
  • Further Reading on Kernel Methods in SVM: Explore Radial Basis Functions (RBF) and their application in classification tasks.
  continue reading

20 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل