Artwork

المحتوى المقدم من Hugo Bowne-Anderson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Hugo Bowne-Anderson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Episode 48: HOW TO BENCHMARK AGI WITH GREG KAMRADT

1:04:25
 
مشاركة
 

Manage episode 484370512 series 3317544
المحتوى المقدم من Hugo Bowne-Anderson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Hugo Bowne-Anderson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

If we want to make progress toward AGI, we need a clear definition of intelligence—and a way to measure it.

In this episode, Hugo talks with Greg Kamradt, President of the ARC Prize Foundation, about ARC-AGI: a benchmark built on Francois Chollet’s definition of intelligence as “the efficiency at which you learn new things.” Unlike most evals that focus on memorization or task completion, ARC is designed to measure generalization—and expose where today’s top models fall short.

They discuss:
🧠 Why we still lack a shared definition of intelligence
🧪 How ARC tasks force models to learn novel skills at test time
📉 Why GPT-4-class models still underperform on ARC
🔎 The limits of traditional benchmarks like MMLU and Big-Bench
⚙️ What the OpenAI O₃ results reveal—and what they don’t
💡 Why generalization and efficiency, not raw capability, are key to AGI

Greg also shares what he’s seeing in the wild: how startups and independent researchers are using ARC as a North Star, how benchmarks shape the frontier, and why the ARC team believes we’ll know we’ve reached AGI when humans can no longer write tasks that models can’t solve.

This conversation is about evaluation—not hype. If you care about where AI is really headed, this one’s worth your time.

LINKS

🎓 Want to go deeper?
Check out Hugo's course: Building LLM Applications for Data Scientists and Software Engineers.
Learn how to design, test, and deploy production-grade LLM systems — with observability, feedback loops, and structure built in.
This isn’t about vibes or fragile agents. It’s about making LLMs reliable, testable, and actually useful.

Includes over $800 in compute credits and guest lectures from experts at DeepMind, Moderna, and more.
Cohort starts July 8 — Use this link for a 10% discount

  continue reading

60 حلقات

Artwork
iconمشاركة
 
Manage episode 484370512 series 3317544
المحتوى المقدم من Hugo Bowne-Anderson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Hugo Bowne-Anderson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

If we want to make progress toward AGI, we need a clear definition of intelligence—and a way to measure it.

In this episode, Hugo talks with Greg Kamradt, President of the ARC Prize Foundation, about ARC-AGI: a benchmark built on Francois Chollet’s definition of intelligence as “the efficiency at which you learn new things.” Unlike most evals that focus on memorization or task completion, ARC is designed to measure generalization—and expose where today’s top models fall short.

They discuss:
🧠 Why we still lack a shared definition of intelligence
🧪 How ARC tasks force models to learn novel skills at test time
📉 Why GPT-4-class models still underperform on ARC
🔎 The limits of traditional benchmarks like MMLU and Big-Bench
⚙️ What the OpenAI O₃ results reveal—and what they don’t
💡 Why generalization and efficiency, not raw capability, are key to AGI

Greg also shares what he’s seeing in the wild: how startups and independent researchers are using ARC as a North Star, how benchmarks shape the frontier, and why the ARC team believes we’ll know we’ve reached AGI when humans can no longer write tasks that models can’t solve.

This conversation is about evaluation—not hype. If you care about where AI is really headed, this one’s worth your time.

LINKS

🎓 Want to go deeper?
Check out Hugo's course: Building LLM Applications for Data Scientists and Software Engineers.
Learn how to design, test, and deploy production-grade LLM systems — with observability, feedback loops, and structure built in.
This isn’t about vibes or fragile agents. It’s about making LLMs reliable, testable, and actually useful.

Includes over $800 in compute credits and guest lectures from experts at DeepMind, Moderna, and more.
Cohort starts July 8 — Use this link for a 10% discount

  continue reading

60 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل