Artwork

المحتوى المقدم من Sequoia Capital. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Sequoia Capital أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

ReflectionAI Founder Ioannis Antonoglou: From AlphaGo to AGI

52:29
 
مشاركة
 

Manage episode 463560176 series 3586723
المحتوى المقدم من Sequoia Capital. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Sequoia Capital أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Ioannis Antonoglou, founding engineer at DeepMind and co-founder of ReflectionAI, has seen the triumphs of reinforcement learning firsthand. From AlphaGo to AlphaZero and MuZero, Ioannis has built the most powerful agents in the world. Ioannis breaks down key moments in AlphaGo's game against Lee Sodol (Moves 37 and 78), the importance of self-play and the impact of scale, reliability, planning and in-context learning as core factors that will unlock the next level of progress in AI.

Hosted by: Stephanie Zhan and Sonya Huang, Sequoia Capital

Mentioned in this episode:

  • PPO: Proximal Policy Optimization algorithm developed by DeepMind in game environments. Also used by OpenAI for RLHF in ChatGPT.
  • MuJoCo: Open source physics engine used to develop PPO
  • Monte Carlo Tree Search: Heuristic search algorithm used in AlphaGo as well as video compression for YouTube and the self-driving system at Tesla
  • AlphaZero: The DeepMind model that taught itself from scratch how to master the games of chess, shogi and Go
  • MuZero: The DeepMind follow up to AlphaZero that mastered games without knowing the rules and able to plan winning strategies in unknown environments
  • AlphaChem: Chemical Synthesis Planning with Tree Search and Deep Neural Network Policies
  • DQN: Deep Q-Network, Introduced in 2013 paper, Playing Atari with Deep Reinforcement Learning
  • AlphaFold: DeepMind model for predicting protein structures for which Demis Hassabis, John Jumper and David Baker won the 2024 Nobel Prize in Chemistry
  continue reading

66 حلقات

Artwork
iconمشاركة
 
Manage episode 463560176 series 3586723
المحتوى المقدم من Sequoia Capital. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Sequoia Capital أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Ioannis Antonoglou, founding engineer at DeepMind and co-founder of ReflectionAI, has seen the triumphs of reinforcement learning firsthand. From AlphaGo to AlphaZero and MuZero, Ioannis has built the most powerful agents in the world. Ioannis breaks down key moments in AlphaGo's game against Lee Sodol (Moves 37 and 78), the importance of self-play and the impact of scale, reliability, planning and in-context learning as core factors that will unlock the next level of progress in AI.

Hosted by: Stephanie Zhan and Sonya Huang, Sequoia Capital

Mentioned in this episode:

  • PPO: Proximal Policy Optimization algorithm developed by DeepMind in game environments. Also used by OpenAI for RLHF in ChatGPT.
  • MuJoCo: Open source physics engine used to develop PPO
  • Monte Carlo Tree Search: Heuristic search algorithm used in AlphaGo as well as video compression for YouTube and the self-driving system at Tesla
  • AlphaZero: The DeepMind model that taught itself from scratch how to master the games of chess, shogi and Go
  • MuZero: The DeepMind follow up to AlphaZero that mastered games without knowing the rules and able to plan winning strategies in unknown environments
  • AlphaChem: Chemical Synthesis Planning with Tree Search and Deep Neural Network Policies
  • DQN: Deep Q-Network, Introduced in 2013 paper, Playing Atari with Deep Reinforcement Learning
  • AlphaFold: DeepMind model for predicting protein structures for which Demis Hassabis, John Jumper and David Baker won the 2024 Nobel Prize in Chemistry
  continue reading

66 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل