Artwork

المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Scaling On-Prem Airflow With 2,000 DAGs at Numberly with Sébastien Crocquevieille

24:17
 
مشاركة
 

Manage episode 501484241 series 2948506
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 حلقات

Artwork
iconمشاركة
 
Manage episode 501484241 series 2948506
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل