Artwork

المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

How Uber Manages 1 Million Daily Tasks Using Airflow, with Shobhit Shah and Sumit Maheshwari

28:44
 
مشاركة
 

Manage episode 450104898 series 2948506
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

71 حلقات

Artwork
iconمشاركة
 
Manage episode 450104898 series 2948506
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

When data orchestration reaches Uber’s scale, innovation becomes a necessity, not a luxury. In this episode, we discuss the innovations behind Uber’s unique Airflow setup. With our guests Shobhit Shah and Sumit Maheshwari, both Staff Software Engineers at Uber, we explore how their team manages one of the largest data workflow systems in the world. Shobhit and Sumit walk us through the evolution of Uber’s Airflow implementation, detailing the custom solutions that support 200,000 daily pipelines. They discuss Uber's approach to tackling complex challenges in data orchestration, disaster recovery and scaling to meet the company’s extensive data needs.

Key Takeaways:

(02:03) Airflow as a service streamlines Uber’s data workflows.

(06:16) Serialization boosts security and reduces errors.

(10:05) Java-based scheduler improves system reliability.

(13:40) Custom recovery model supports emergency pipeline switching.

(15:58) No-code UI allows easy pipeline creation for non-coders.

(18:12) Backfill feature enables historical data processing.

(22:06) Regular updates keep Uber aligned with Airflow advancements.

(26:07) Plans to leverage Airflow’s latest features.

Resources Mentioned:

Shobhit Shah -

https://www.linkedin.com/in/shahshobhit/

Sumit Maheshwar -

https://www.linkedin.com/in/maheshwarisumit/

Uber -

https://www.linkedin.com/company/uber-com/

Apache Airflow -

https://airflow.apache.org/

Airflow Summit -

https://airflowsummit.org/

Uber -

https://www.uber.com/tw/en/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

71 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل