Artwork

المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Why Developer Experience Shapes Data Pipeline Standards at Next Insurance with Snir Israeli

30:28
 
مشاركة
 

Manage episode 481301881 series 2053958
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 حلقات

Artwork
iconمشاركة
 
Manage episode 481301881 series 2053958
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

69 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل