Artwork

المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Building Scalable ML Infrastructure at Outerbounds with Savin Goyal

36:46
 
مشاركة
 

Manage episode 471109690 series 2053958
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

58 حلقات

Artwork
iconمشاركة
 
Manage episode 471109690 series 2053958
المحتوى المقدم من The Data Flowcast. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة The Data Flowcast أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

58 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل