Artwork

المحتوى المقدم من Connected Data World. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Connected Data World أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Graph Analytics vs Graph Machine Learning | Jörg Schad

29:07
 
مشاركة
 

Manage episode 365202417 series 2773575
المحتوى المقدم من Connected Data World. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Connected Data World أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

38 حلقات

Artwork
iconمشاركة
 
Manage episode 365202417 series 2773575
المحتوى المقدم من Connected Data World. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Connected Data World أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

38 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع