Artwork

المحتوى المقدم من Alena Simpson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alena Simpson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

#2 Big Data - Pitfalls of Non-Traditional Research Methods

12:36
 
مشاركة
 

Manage episode 304235593 series 2992707
المحتوى المقدم من Alena Simpson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alena Simpson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

You've probably heard how big data has changed the world by bringing hyper-customization to the forefront, discovering obscure patterns, and allowing people to react quickly to new information. In this episode Leina discusses the pros and cons of the big data revolution from a scientific standpoint. Here are the pitfalls she wants you to be aware of:

  • Big data analysis finds complex patterns quickly but cannot explain scientific phenomena. Most people are willing to accept subjective explanations to phenomena regardless of whether it is supported by evidence.
  • Research and analyses using big data is shaped around the data that is available, while the underlying causal relationship may not be captured.
  • By emphasizing correlations rather than root-causes we further impede finding effective long-term solutions.
  • "Correlation is not causation" is used selectively to confirm biases or enable cognitive dissonance. It is true, but observing patterns is part of the process of asking questions.
  • Big data is inherently dehumanizing by turning people into numbers.
  • Data fishing, also known as significance chasing, is when one approaches a research problem without a predefined hypothesis.
  • There is an increasing absence of gold standard research methodology that emphasizes the use of sample randomization, placebo groups, and blinding to minimize bias.
  • Big data quality is notoriously poor. Missing data, subjective and inconsistent definitions, and unstandardized methods of collection make the data scientist's job difficult.
  • Qualitative methods are not always taken into consideration to confirm or reject big data findings.
  • Any data can be skewed and omit information altogether.
  • Standardization is likely impossible. It should be emphasized that one should always READ THE FINE PRINT.

Leina is here to remind you that bigger is not always better. Join on Facebook, Twitter, and Instagram https://linktr.ee/leinacast

  continue reading

2 حلقات

Artwork
iconمشاركة
 
Manage episode 304235593 series 2992707
المحتوى المقدم من Alena Simpson. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alena Simpson أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

You've probably heard how big data has changed the world by bringing hyper-customization to the forefront, discovering obscure patterns, and allowing people to react quickly to new information. In this episode Leina discusses the pros and cons of the big data revolution from a scientific standpoint. Here are the pitfalls she wants you to be aware of:

  • Big data analysis finds complex patterns quickly but cannot explain scientific phenomena. Most people are willing to accept subjective explanations to phenomena regardless of whether it is supported by evidence.
  • Research and analyses using big data is shaped around the data that is available, while the underlying causal relationship may not be captured.
  • By emphasizing correlations rather than root-causes we further impede finding effective long-term solutions.
  • "Correlation is not causation" is used selectively to confirm biases or enable cognitive dissonance. It is true, but observing patterns is part of the process of asking questions.
  • Big data is inherently dehumanizing by turning people into numbers.
  • Data fishing, also known as significance chasing, is when one approaches a research problem without a predefined hypothesis.
  • There is an increasing absence of gold standard research methodology that emphasizes the use of sample randomization, placebo groups, and blinding to minimize bias.
  • Big data quality is notoriously poor. Missing data, subjective and inconsistent definitions, and unstandardized methods of collection make the data scientist's job difficult.
  • Qualitative methods are not always taken into consideration to confirm or reject big data findings.
  • Any data can be skewed and omit information altogether.
  • Standardization is likely impossible. It should be emphasized that one should always READ THE FINE PRINT.

Leina is here to remind you that bigger is not always better. Join on Facebook, Twitter, and Instagram https://linktr.ee/leinacast

  continue reading

2 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل