Artwork

المحتوى المقدم من Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Can You Rely on Your AI? Applying the AIR Tool to Improve Classifier Performance

38:50
 
مشاركة
 

Manage episode 421358557 series 1264075
المحتوى المقدم من Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 حلقات

Artwork
iconمشاركة
 
Manage episode 421358557 series 1264075
المحتوى المقدم من Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 حلقات

सभी एपिसोड

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل