Artwork

المحتوى المقدم من Brian Carter. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Brian Carter أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Scottish AI: Laughter Detection in Machine Learning

5:49
 
مشاركة
 

Manage episode 445652460 series 3605861
المحتوى المقدم من Brian Carter. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Brian Carter أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Recognizing laughter in audio is actually a very difficult ML problem, filled with failure. Much like most comedians' jokes. Let's hope some good stuff survives.

This is a review of a student's final year project for a University of Edinburgh computer science course. The project focused on creating a machine learning model to detect laughter in video calls, aiming to improve engagement and reduce muting by automatically unmuting users when laughter is detected. However, the project faced challenges, including poor model performance and the discovery that many non-transcribed regions in the ICSI corpus are not actually silence, but quieter speech by other participants. The student detailed the process of evaluating an existing laughter recognition model, training their own model on the ICSI corpus, investigating the impact of training data on model performance, and examining the practicality of real-time laughter detection. Despite the project's ultimate failure to achieve its original goal, it provided valuable insights, generated a publicly available codebase for future research, and highlighted the importance of analyzing non-transcribed regions in audio data for improved accuracy.

Read Lasse Wolter's paper here: https://project-archive.inf.ed.ac.uk/ug4/20222999/ug4_proj.pdf

  continue reading

71 حلقات

Artwork
iconمشاركة
 
Manage episode 445652460 series 3605861
المحتوى المقدم من Brian Carter. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Brian Carter أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Recognizing laughter in audio is actually a very difficult ML problem, filled with failure. Much like most comedians' jokes. Let's hope some good stuff survives.

This is a review of a student's final year project for a University of Edinburgh computer science course. The project focused on creating a machine learning model to detect laughter in video calls, aiming to improve engagement and reduce muting by automatically unmuting users when laughter is detected. However, the project faced challenges, including poor model performance and the discovery that many non-transcribed regions in the ICSI corpus are not actually silence, but quieter speech by other participants. The student detailed the process of evaluating an existing laughter recognition model, training their own model on the ICSI corpus, investigating the impact of training data on model performance, and examining the practicality of real-time laughter detection. Despite the project's ultimate failure to achieve its original goal, it provided valuable insights, generated a publicly available codebase for future research, and highlighted the importance of analyzing non-transcribed regions in audio data for improved accuracy.

Read Lasse Wolter's paper here: https://project-archive.inf.ed.ac.uk/ug4/20222999/ug4_proj.pdf

  continue reading

71 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع