انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
025 | Self-Supervised Machine Learning: Introduction, Intuitions, and Use-Cases
Manage episode 255297259 series 2519888
On this episode of Bit of A Tangent, we discuss the emerging field of self-supervised machine learning. This is an immensely exciting area of active research in machine learning and AI - one which most people haven’t even heard about yet! We build up to the intuition for the topic by covering supervised and unsupervised learning; autoencoders and dimensionality reduction, and exploring how these techniques could be applied to Gianluca’s Quantified Self n=1 sleep quality dataset. We culminate in a detailed discussion of the state-of-the-art Contrastive Predictive Coding model, and how it allows us to learn about the structure of the world, without tonnes of labelled training data!
--------
Shownotes:
--------
Jared on Twitter: www.twitter.com/jnearestn
Gianluca on Twitter: www.twitter.com/QVagabond
Bit of a Tangent on Twitter (www.twitter.com/podtangent) and Instagram (instagram.com/podtangent/)
Summer school on Computational Neuroscience: http://imbizo.africa/
Control problem in AI: https://intelligence.org/stanford-talk/
Coordination problem: https://conceptually.org/concepts/coordination-problems
Deep learning overview: https://lilianweng.github.io/lil-log/2017/06/21/an-overview-of-deep-learning.html
t-SNE explained: https://mlexplained.com/2018/09/14/paper-dissected-visualizing-data-using-t-sne-explained/
Variational autoencoders explained: https://anotherdatum.com/vae.html
Self-supervised learning by fast.ai: https://www.fast.ai/2020/01/13/self_supervised/
CPC model papers on Arxiv: https://arxiv.org/pdf/1807.03748.pdf https://arxiv.org/pdf/1905.09272.pdf
Blog posts explaining CPC: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://mf1024.github.io/2019/05/27/contrastive-predictive-coding/
31 حلقات
Manage episode 255297259 series 2519888
On this episode of Bit of A Tangent, we discuss the emerging field of self-supervised machine learning. This is an immensely exciting area of active research in machine learning and AI - one which most people haven’t even heard about yet! We build up to the intuition for the topic by covering supervised and unsupervised learning; autoencoders and dimensionality reduction, and exploring how these techniques could be applied to Gianluca’s Quantified Self n=1 sleep quality dataset. We culminate in a detailed discussion of the state-of-the-art Contrastive Predictive Coding model, and how it allows us to learn about the structure of the world, without tonnes of labelled training data!
--------
Shownotes:
--------
Jared on Twitter: www.twitter.com/jnearestn
Gianluca on Twitter: www.twitter.com/QVagabond
Bit of a Tangent on Twitter (www.twitter.com/podtangent) and Instagram (instagram.com/podtangent/)
Summer school on Computational Neuroscience: http://imbizo.africa/
Control problem in AI: https://intelligence.org/stanford-talk/
Coordination problem: https://conceptually.org/concepts/coordination-problems
Deep learning overview: https://lilianweng.github.io/lil-log/2017/06/21/an-overview-of-deep-learning.html
t-SNE explained: https://mlexplained.com/2018/09/14/paper-dissected-visualizing-data-using-t-sne-explained/
Variational autoencoders explained: https://anotherdatum.com/vae.html
Self-supervised learning by fast.ai: https://www.fast.ai/2020/01/13/self_supervised/
CPC model papers on Arxiv: https://arxiv.org/pdf/1807.03748.pdf https://arxiv.org/pdf/1905.09272.pdf
Blog posts explaining CPC: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://mf1024.github.io/2019/05/27/contrastive-predictive-coding/
31 حلقات
Minden epizód
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.