Artwork

المحتوى المقدم من Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

[Paid Course] Snowpal Education: (Weaviate) Open Source Vector Database

1:31
 
مشاركة
 

Manage episode 456056998 series 3530865
المحتوى المقدم من Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this conversation, Krish Palaniappan introduces Weaviate, an open-source vector database, and explores its functionalities compared to traditional databases. The discussion covers the setup and configuration of Weaviate, hands-on coding examples, and the importance of vectorization and embeddings in AI. The conversation also addresses debugging challenges faced during implementation and concludes with a recap of the key points discussed. Takeaways

  • Weaviate is an open-source vector database designed for AI applications.

  • Vector databases differ fundamentally from traditional databases in data retrieval methods.

  • Understanding vector embeddings is crucial for leveraging vector databases effectively.

  • Hands-on coding examples help illustrate the practical use of Weaviate.

  • Python is often preferred for AI-related programming due to its extensive support.

  • Debugging is an essential part of working with new technologies like Weaviate.

  • Vectorization optimizes database operations for modern CPU architectures.

  • Embedding models can encode various types of unstructured data.

  • The conversation emphasizes co-learning and exploration of new technologies.

  • Future discussions may delve deeper into the capabilities of vector databases.

Chapters

00:00 Introduction to Weaviate and Vector Databases

06:58 Understanding Vector Databases vs Traditional Databases

12:05 Exploring Weaviate: Setup and Configuration

20:32 Hands-On with Weaviate: Coding and Implementation

34:50 Deep Dive into Vectorization and Embeddings

42:15 Debugging and Troubleshooting Weaviate Code

01:20:40 Recap and Future Directions

Purchase course in one of 2 ways:

1. Go to https://getsnowpal.com, and purchase it on the Web

2. On your phone:

(i) If you are an iPhone user, go to http://ios.snowpal.com, and watch the course on the go.

(ii). If you are an Android user, go to http://android.snowpal.com.

  continue reading

198 حلقات

Artwork
iconمشاركة
 
Manage episode 456056998 series 3530865
المحتوى المقدم من Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Krish Palaniappan and Varun Palaniappan, Krish Palaniappan, and Varun Palaniappan أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this conversation, Krish Palaniappan introduces Weaviate, an open-source vector database, and explores its functionalities compared to traditional databases. The discussion covers the setup and configuration of Weaviate, hands-on coding examples, and the importance of vectorization and embeddings in AI. The conversation also addresses debugging challenges faced during implementation and concludes with a recap of the key points discussed. Takeaways

  • Weaviate is an open-source vector database designed for AI applications.

  • Vector databases differ fundamentally from traditional databases in data retrieval methods.

  • Understanding vector embeddings is crucial for leveraging vector databases effectively.

  • Hands-on coding examples help illustrate the practical use of Weaviate.

  • Python is often preferred for AI-related programming due to its extensive support.

  • Debugging is an essential part of working with new technologies like Weaviate.

  • Vectorization optimizes database operations for modern CPU architectures.

  • Embedding models can encode various types of unstructured data.

  • The conversation emphasizes co-learning and exploration of new technologies.

  • Future discussions may delve deeper into the capabilities of vector databases.

Chapters

00:00 Introduction to Weaviate and Vector Databases

06:58 Understanding Vector Databases vs Traditional Databases

12:05 Exploring Weaviate: Setup and Configuration

20:32 Hands-On with Weaviate: Coding and Implementation

34:50 Deep Dive into Vectorization and Embeddings

42:15 Debugging and Troubleshooting Weaviate Code

01:20:40 Recap and Future Directions

Purchase course in one of 2 ways:

1. Go to https://getsnowpal.com, and purchase it on the Web

2. On your phone:

(i) If you are an iPhone user, go to http://ios.snowpal.com, and watch the course on the go.

(ii). If you are an Android user, go to http://android.snowpal.com.

  continue reading

198 حلقات

모든 에피소드

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل