Artwork

المحتوى المقدم من O'Reilly Media. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة O'Reilly Media أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

It’s time for data scientists to collaborate with researchers in other disciplines

36:08
 
مشاركة
 

Manage episode 372641238 series 3497926
المحتوى المقدم من O'Reilly Media. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة O'Reilly Media أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

15 حلقات

Artwork
iconمشاركة
 
Manage episode 372641238 series 3497926
المحتوى المقدم من O'Reilly Media. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة O'Reilly Media أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode of the Data Show, I spoke with Forough Poursabzi-Sangdeh, a postdoctoral researcher at Microsoft Research New York City. Poursabzi works in the interdisciplinary area of interpretable and interactive machine learning. As models and algorithms become more widespread, many important considerations are becoming active research areas: fairness and bias, safety and reliability, security and privacy, and Poursabzi’s area of focus—explainability and interpretability.

We had a great conversation spanning many topics, including:

  • Current best practices and state-of-the-art methods used to explain or interpret deep learning—or, more generally, machine learning models.
  • The limitations of current model interpretability methods.
  • The lack of clear/standard metrics for comparing different approaches used for model interpretability
  • Many current AI and machine learning applications augment humans, and, thus, Poursabzi believes it’s important for data scientists to work closely with researchers in other disciplines.
  • The importance of using human subjects in model interpretability studies.

Related resources:

  continue reading

15 حلقات

Toate episoadele

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل