Artwork

المحتوى المقدم من Regina Nuzzo and Kristin Sainani. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Regina Nuzzo and Kristin Sainani أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

P-Values: Are we using a flawed statistical tool?

1:13:26
 
مشاركة
 

Manage episode 507855058 series 3646567
المحتوى المقدم من Regina Nuzzo and Kristin Sainani. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Regina Nuzzo and Kristin Sainani أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

P-values show up in almost every scientific paper, yet they’re one of the most misunderstood ideas in statistics. In this episode, we break from our usual journal-club format to unpack what a p-value really is, why researchers have fought about it for a century, and how that famous 0.05 cutoff became enshrined in science. Along the way, we share stories from our own papers—from a Nature feature that helped reshape the debate to a statistical sleuthing project that uncovered a faulty method in sports science. The result: a behind-the-scenes look at how one statistical tool has shaped the culture of science itself.

Statistical topics

  • Bayesian statistics
  • Confidence intervals
  • Effect size vs. statistical significance
  • Fisher’s conception of p-values
  • Frequentist perspective
  • Magnitude-Based Inference (MBI)
  • Multiple testing / multiple comparisons
  • Neyman-Pearson hypothesis testing framework
  • P-hacking
  • Posterior probabilities
  • Preregistration and registered reports
  • Prior probabilities
  • P-values
  • Researcher degrees of freedom
  • Significance thresholds (p < 0.05)
  • Simulation-based inference
  • Statistical power
  • Statistical significance
  • Transparency in research
  • Type I error (false positive)
  • Type II error (false negative)
  • Winner’s Curse

Methodological morals

  • “​​If p-values tell us the probability the null is true, then octopuses are psychic.”
  • “Statistical tools don't fool us, blind faith in them does.”

References

Kristin and Regina’s online courses:

Demystifying Data: A Modern Approach to Statistical Understanding

Clinical Trials: Design, Strategy, and Analysis

Medical Statistics Certificate Program

Writing in the Sciences

Epidemiology and Clinical Research Graduate Certificate Program

Programs that we teach in:

Epidemiology and Clinical Research Graduate Certificate Program

Find us on:

Kristin - LinkedIn & Twitter/X

Regina - LinkedIn & ReginaNuzzo.com

  • (00:00) - Intro & claim of the episode
  • (01:00) - Why p-values matter in science
  • (02:44) - What is a p-value? (ESP guessing game)
  • (06:47) - Big vs. small p-values (psychic octopus example)
  • (08:29) - Significance thresholds and the 0.05 rule
  • (09:00) - Regina’s Nature paper on p-values
  • (11:32) - Misconceptions about p-values
  • (13:18) - Fisher vs. Neyman-Pearson (history & feud)
  • (16:26) - Botox analogy and type I vs. type II errors
  • (19:41) - Dating app analogies for false positives/negatives
  • (22:02) - How the 0.05 cutoff got enshrined
  • (23:46) - Misinterpretations: statistical vs. practical significance
  • (25:22) - Effect size, sample size, and “statistically discernible”
  • (25:51) - P-hacking and researcher degrees of freedom
  • (28:52) - Transparency, preregistration, and open science
  • (29:58) - The 0.05 cutoff trap (p = 0.049 vs 0.051)
  • (30:24) - The biggest misinterpretation: what p-values actually mean
  • (32:35) - Paul the psychic octopus (worked example)
  • (35:05) - Why Bayesian statistics differ
  • (38:55) - Why aren’t we all Bayesian? (probability wars)
  • (40:11) - The ASA p-value statement (behind the scenes)
  • (42:22) - Key principles from the ASA white paper
  • (43:21) - Wrapping up Regina’s paper
  • (44:39) - Kristin’s paper on sports science (MBI)
  • (47:16) - What MBI is and how it spread
  • (49:49) - How Kristin got pulled in (Christie Aschwanden & FiveThirtyEight)
  • (53:11) - Critiques of MBI and “Bayesian monster” rebuttal
  • (55:20) - Spreadsheet autopsies (Welsh & Knight)
  • (57:11) - Cherry juice example (why MBI misleads)
  • (59:28) - Rebuttals and smoke & mirrors from MBI advocates
  • (01:02:01) - Winner’s Curse and small samples
  • (01:02:44) - Twitter fights & “establishment statistician”
  • (01:05:02) - Cult-like following & Matrix red pill analogy
  • (01:07:12) - Wrap-up

  continue reading

18 حلقات

Artwork
iconمشاركة
 
Manage episode 507855058 series 3646567
المحتوى المقدم من Regina Nuzzo and Kristin Sainani. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Regina Nuzzo and Kristin Sainani أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

P-values show up in almost every scientific paper, yet they’re one of the most misunderstood ideas in statistics. In this episode, we break from our usual journal-club format to unpack what a p-value really is, why researchers have fought about it for a century, and how that famous 0.05 cutoff became enshrined in science. Along the way, we share stories from our own papers—from a Nature feature that helped reshape the debate to a statistical sleuthing project that uncovered a faulty method in sports science. The result: a behind-the-scenes look at how one statistical tool has shaped the culture of science itself.

Statistical topics

  • Bayesian statistics
  • Confidence intervals
  • Effect size vs. statistical significance
  • Fisher’s conception of p-values
  • Frequentist perspective
  • Magnitude-Based Inference (MBI)
  • Multiple testing / multiple comparisons
  • Neyman-Pearson hypothesis testing framework
  • P-hacking
  • Posterior probabilities
  • Preregistration and registered reports
  • Prior probabilities
  • P-values
  • Researcher degrees of freedom
  • Significance thresholds (p < 0.05)
  • Simulation-based inference
  • Statistical power
  • Statistical significance
  • Transparency in research
  • Type I error (false positive)
  • Type II error (false negative)
  • Winner’s Curse

Methodological morals

  • “​​If p-values tell us the probability the null is true, then octopuses are psychic.”
  • “Statistical tools don't fool us, blind faith in them does.”

References

Kristin and Regina’s online courses:

Demystifying Data: A Modern Approach to Statistical Understanding

Clinical Trials: Design, Strategy, and Analysis

Medical Statistics Certificate Program

Writing in the Sciences

Epidemiology and Clinical Research Graduate Certificate Program

Programs that we teach in:

Epidemiology and Clinical Research Graduate Certificate Program

Find us on:

Kristin - LinkedIn & Twitter/X

Regina - LinkedIn & ReginaNuzzo.com

  • (00:00) - Intro & claim of the episode
  • (01:00) - Why p-values matter in science
  • (02:44) - What is a p-value? (ESP guessing game)
  • (06:47) - Big vs. small p-values (psychic octopus example)
  • (08:29) - Significance thresholds and the 0.05 rule
  • (09:00) - Regina’s Nature paper on p-values
  • (11:32) - Misconceptions about p-values
  • (13:18) - Fisher vs. Neyman-Pearson (history & feud)
  • (16:26) - Botox analogy and type I vs. type II errors
  • (19:41) - Dating app analogies for false positives/negatives
  • (22:02) - How the 0.05 cutoff got enshrined
  • (23:46) - Misinterpretations: statistical vs. practical significance
  • (25:22) - Effect size, sample size, and “statistically discernible”
  • (25:51) - P-hacking and researcher degrees of freedom
  • (28:52) - Transparency, preregistration, and open science
  • (29:58) - The 0.05 cutoff trap (p = 0.049 vs 0.051)
  • (30:24) - The biggest misinterpretation: what p-values actually mean
  • (32:35) - Paul the psychic octopus (worked example)
  • (35:05) - Why Bayesian statistics differ
  • (38:55) - Why aren’t we all Bayesian? (probability wars)
  • (40:11) - The ASA p-value statement (behind the scenes)
  • (42:22) - Key principles from the ASA white paper
  • (43:21) - Wrapping up Regina’s paper
  • (44:39) - Kristin’s paper on sports science (MBI)
  • (47:16) - What MBI is and how it spread
  • (49:49) - How Kristin got pulled in (Christie Aschwanden & FiveThirtyEight)
  • (53:11) - Critiques of MBI and “Bayesian monster” rebuttal
  • (55:20) - Spreadsheet autopsies (Welsh & Knight)
  • (57:11) - Cherry juice example (why MBI misleads)
  • (59:28) - Rebuttals and smoke & mirrors from MBI advocates
  • (01:02:01) - Winner’s Curse and small samples
  • (01:02:44) - Twitter fights & “establishment statistician”
  • (01:05:02) - Cult-like following & Matrix red pill analogy
  • (01:07:12) - Wrap-up

  continue reading

18 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل