DNA science. Artificial intelligence. Smartphones and 3D printers. Science and technology have transformed the world we live in. But how did we get here? It wasn’t by accident. Well, sometimes it was. It was also the result of hard work, teamwork, and competition. And incredibly surprising moments. Hosted by bestselling author Steven Johnson (“How We Got To Now”), American Innovations uses immersive scenes to tell the stories of the scientists, engineers, and ordinary people behind the great ...
…
continue reading
المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
99 - Evaluating Protein Transfer Learning, With Roshan Rao And Neil Thomas
MP3•منزل الحلقة
Manage episode 248205583 series 1452120
المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
For this episode, we chatted with Neil Thomas and Roshan Rao about modeling protein sequences and evaluating transfer learning methods for a set of five protein modeling tasks. Learning representations using self-supervised pretaining objectives has shown promising results in transferring to downstream tasks in protein sequence modeling, just like it has in NLP. We started off by discussing the similarities and differences between language and protein sequence data, and how the contextual embedding techniques are applicable also to protein sequences. Neil and Roshan then described a set of five benchmark tasks to assess the quality of protein embeddings (TAPE), particularly in terms of how well they capture the structural, functional, and evolutionary aspects of proteins. The results from the experiments they ran with various model architectures indicated that there was not a single best performing model across all tasks, and that there is a lot of room for future work in protein sequence modeling. Neil Thomas and Roshan Rao are PhD students at UC Berkeley. Paper: https://www.biorxiv.org/content/10.1101/676825v1 Blog post: https://bair.berkeley.edu/blog/2019/11/04/proteins/
…
continue reading
145 حلقات
MP3•منزل الحلقة
Manage episode 248205583 series 1452120
المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
For this episode, we chatted with Neil Thomas and Roshan Rao about modeling protein sequences and evaluating transfer learning methods for a set of five protein modeling tasks. Learning representations using self-supervised pretaining objectives has shown promising results in transferring to downstream tasks in protein sequence modeling, just like it has in NLP. We started off by discussing the similarities and differences between language and protein sequence data, and how the contextual embedding techniques are applicable also to protein sequences. Neil and Roshan then described a set of five benchmark tasks to assess the quality of protein embeddings (TAPE), particularly in terms of how well they capture the structural, functional, and evolutionary aspects of proteins. The results from the experiments they ran with various model architectures indicated that there was not a single best performing model across all tasks, and that there is a lot of room for future work in protein sequence modeling. Neil Thomas and Roshan Rao are PhD students at UC Berkeley. Paper: https://www.biorxiv.org/content/10.1101/676825v1 Blog post: https://bair.berkeley.edu/blog/2019/11/04/proteins/
…
continue reading
145 حلقات
كل الحلقات
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.