Artwork

المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

107 - Multi-Modal Transformers, with Hao Tan and Mohit Bansal

37:34
 
مشاركة
 

Manage episode 254400458 series 1452120
المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
  continue reading

145 حلقات

Artwork
iconمشاركة
 
Manage episode 254400458 series 1452120
المحتوى المقدم من NLP Highlights and Allen Institute for Artificial Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة NLP Highlights and Allen Institute for Artificial Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
In this episode, we invite Hao Tan and Mohit Bansal to talk about multi-modal training of transformers, focusing in particular on their EMNLP 2019 paper that introduced LXMERT, a vision+language transformer. We spend the first third of the episode talking about why you might want to have multi-modal representations. We then move to the specifics of LXMERT, including the model structure, the losses that are used to encourage cross-modal representations, and the data that is used. Along the way, we mention latent alignments between images and captions, the granularity of captions, and machine translation even comes up a few times. We conclude with some speculation on the future of multi-modal representations. Hao's website: http://www.cs.unc.edu/~airsplay/ Mohit's website: http://www.cs.unc.edu/~mbansal/ LXMERT paper: https://www.aclweb.org/anthology/D19-1514/
  continue reading

145 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل