Artwork

المحتوى المقدم من S&P Global Market Intelligence and P Global Market Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة S&P Global Market Intelligence and P Global Market Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Context Engineering

25:55
 
مشاركة
 

Manage episode 522522291 series 2877784
المحتوى المقدم من S&P Global Market Intelligence and P Global Market Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة S&P Global Market Intelligence and P Global Market Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

As organizations have worked to leverage the power of AI in interacting with large language models, they've invested in prompt engineering to generate better results. But agents shift the need manage the full context of not only the prompt, but also the data that's being presented. Analysts Jean Atelsek and Alex Johnston return to the podcast to look at the new discipline of context engineering and how it's being put to work in AI environments with host Eric Hanselman. The process of context engineering looks at ensuring that the right data context is in place for agents to act on. It requires a shift from thinking that more data is necessarily better and understanding to getting the right data is the best insurance against agents picking up bad habits. We've come full circle in approaches to data and organizations need to raise the level of abstraction at which they address data need for agentic applications.

We've been working through waves of capability in the march to agentic operations. Organizations have access to the same models, but how they're used is where differentiation is possible. Agentic approaches demand greater sophistication and understanding around the context with which data is presented to applications. There has to be more careful curation, to get reasonable results.

More S&P Global Content:

For S&P Global Subscribers:

Credits:

  continue reading

100 حلقات

Artwork

Context Engineering

Next in Tech

12 subscribers

published

iconمشاركة
 
Manage episode 522522291 series 2877784
المحتوى المقدم من S&P Global Market Intelligence and P Global Market Intelligence. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة S&P Global Market Intelligence and P Global Market Intelligence أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

As organizations have worked to leverage the power of AI in interacting with large language models, they've invested in prompt engineering to generate better results. But agents shift the need manage the full context of not only the prompt, but also the data that's being presented. Analysts Jean Atelsek and Alex Johnston return to the podcast to look at the new discipline of context engineering and how it's being put to work in AI environments with host Eric Hanselman. The process of context engineering looks at ensuring that the right data context is in place for agents to act on. It requires a shift from thinking that more data is necessarily better and understanding to getting the right data is the best insurance against agents picking up bad habits. We've come full circle in approaches to data and organizations need to raise the level of abstraction at which they address data need for agentic applications.

We've been working through waves of capability in the march to agentic operations. Organizations have access to the same models, but how they're used is where differentiation is possible. Agentic approaches demand greater sophistication and understanding around the context with which data is presented to applications. There has to be more careful curation, to get reasonable results.

More S&P Global Content:

For S&P Global Subscribers:

Credits:

  continue reading

100 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل