انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
Episode 16: Ayse Turak on organic optoelectronics & diversity in the materials community
Manage episode 342588481 series 2602554
Victor A. Rodriguez-Toro, a researcher in materials and devices and a science correspondent for MRS Bulletin, interviews Ayse Turak, Associate Professor of Engineering Physics and Director of the Centre for Emerging Device Technologies at McMaster University in Canada, about her group’s research in organic optoelectronics. Turak focuses her research on developing easy, versatile, and inexpensive methods of exploring and tuning interfaces, particularly in organic, perovskite and nanoparticle solar cells, light-emitting diodes, and sensors. Turak discusses her latest work in which her group controlled the reaction kinetics and slowed down the rate of perovskite formation by using diblock copolymer reverse micelle templating. “The slowed reaction,” they write in their article, “allows the use of an unconventional approach, mixing methylammonium iodide (MAI) and lead bromide (PbBr3) to produce pure methylammonium lead bromide MAPbBr3 [nanoparticles].” With this method, Turak’s group achieved two stable phases in a single solution. Turak also talks about challenges to using nanoparticles in devices for wearable electronics and the role of LiF interfaces for high-efficiency organic solar cells. She speculates on which type of optoelectronics will be preferred for commercialization. As an “out” lgbtq+ researcher in the materials science field, Turak provides insights into how universities and research centers can open the doors to help lgbtq+ scientists feel more integrated into the scientific community. She also provides advice to the new generation of researchers coming from different backgrounds representing diversity in science-technology-engineering-mathematics (STEM).
103 حلقات
Manage episode 342588481 series 2602554
Victor A. Rodriguez-Toro, a researcher in materials and devices and a science correspondent for MRS Bulletin, interviews Ayse Turak, Associate Professor of Engineering Physics and Director of the Centre for Emerging Device Technologies at McMaster University in Canada, about her group’s research in organic optoelectronics. Turak focuses her research on developing easy, versatile, and inexpensive methods of exploring and tuning interfaces, particularly in organic, perovskite and nanoparticle solar cells, light-emitting diodes, and sensors. Turak discusses her latest work in which her group controlled the reaction kinetics and slowed down the rate of perovskite formation by using diblock copolymer reverse micelle templating. “The slowed reaction,” they write in their article, “allows the use of an unconventional approach, mixing methylammonium iodide (MAI) and lead bromide (PbBr3) to produce pure methylammonium lead bromide MAPbBr3 [nanoparticles].” With this method, Turak’s group achieved two stable phases in a single solution. Turak also talks about challenges to using nanoparticles in devices for wearable electronics and the role of LiF interfaces for high-efficiency organic solar cells. She speculates on which type of optoelectronics will be preferred for commercialization. As an “out” lgbtq+ researcher in the materials science field, Turak provides insights into how universities and research centers can open the doors to help lgbtq+ scientists feel more integrated into the scientific community. She also provides advice to the new generation of researchers coming from different backgrounds representing diversity in science-technology-engineering-mathematics (STEM).
103 حلقات
所有剧集
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.