Artwork

المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

"We Are Very Early in Our Work With LLMs," - Prem Ramaswami, Head of Data Commons at Google

13:53
 
مشاركة
 

Manage episode 513589911 series 3474148
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

407 حلقات

Artwork
iconمشاركة
 
Manage episode 513589911 series 3474148
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

407 حلقات

כל הפרקים

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل