Artwork

المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Breaking Down Low-Rank Adaptation and Its Next Evolution, ReLoRA

3:47
 
مشاركة
 

Manage episode 516831580 series 3474148
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/breaking-down-low-rank-adaptation-and-its-next-evolution-relora.
Learn how LoRA and ReLoRA improve AI model training by cutting memory use and boosting efficiency without full-rank computation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #neural-networks, #sparse-spectral-training, #neural-network-optimization, #memory-efficient-ai-training, #hyperbolic-neural-networks, #efficient-model-pretraining, #singular-value-decomposition, #low-rank-adaptation, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
Low-Rank Adaptation (LoRA) and its successor ReLoRA offer more efficient ways to fine-tune large AI models by reducing the computational and memory costs of traditional full-rank training. ReLoRA* extends this idea through zero-initialized layers and optimizer resets for even leaner adaptation—but its reliance on random initialization and limited singular value learning can cause slower convergence. The section sets the stage for Sparse Spectral Training (SST), which aims to resolve these bottlenecks and match full-rank performance with far lower resource demands.

  continue reading

407 حلقات

Artwork
iconمشاركة
 
Manage episode 516831580 series 3474148
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/breaking-down-low-rank-adaptation-and-its-next-evolution-relora.
Learn how LoRA and ReLoRA improve AI model training by cutting memory use and boosting efficiency without full-rank computation.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #neural-networks, #sparse-spectral-training, #neural-network-optimization, #memory-efficient-ai-training, #hyperbolic-neural-networks, #efficient-model-pretraining, #singular-value-decomposition, #low-rank-adaptation, and more.
This story was written by: @hyperbole. Learn more about this writer by checking @hyperbole's about page, and for more stories, please visit hackernoon.com.
Low-Rank Adaptation (LoRA) and its successor ReLoRA offer more efficient ways to fine-tune large AI models by reducing the computational and memory costs of traditional full-rank training. ReLoRA* extends this idea through zero-initialized layers and optimizer resets for even leaner adaptation—but its reliance on random initialization and limited singular value learning can cause slower convergence. The section sets the stage for Sparse Spectral Training (SST), which aims to resolve these bottlenecks and match full-rank performance with far lower resource demands.

  continue reading

407 حلقات

כל הפרקים

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل