Artwork

المحتوى المقدم من Machine Learning Street Talk (MLST). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Machine Learning Street Talk (MLST) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Prof. Jakob Foerster - ImageNet Moment for Reinforcement Learning?

53:31
 
مشاركة
 

Manage episode 467295186 series 2803422
المحتوى المقدم من Machine Learning Street Talk (MLST). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Machine Learning Street Talk (MLST) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT/REFS:

https://www.dropbox.com/scl/fi/yqjszhntfr00bhjh6t565/JAKOB.pdf?rlkey=scvny4bnwj8th42fjv8zsfu2y&dl=0

Prof. Jakob Foerster

https://x.com/j_foerst

https://www.jakobfoerster.com/

University of Oxford Profile:

https://eng.ox.ac.uk/people/jakob-foerster/

Chris Lu:

https://chrislu.page/

TOC

1. GPU Acceleration and Training Infrastructure

[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview

[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL

[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions

[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization

[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework

[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms

[00:21:47] 2.3 Language Models and Benchmark Challenges

[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization

[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence

[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems

[00:42:44] 3.3 Democratic Control and Decentralization of AI Development

[00:46:14] 3.4 Open Source AI and Alignment Challenges

[00:49:31] 3.5 Collaborative Models for AI Development

REFS

[[00:00:05] ARC Benchmark, Chollet

https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan

https://www.alexirpan.com/2018/02/14/rl-hard.html

[00:05:55] AI Training Data, Data Provenance Initiative

https://www.nytimes.com/2024/07/19/technology/ai-data-restrictions.html

[00:06:10] JaxMARL, Foerster et al.

https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.

https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research

https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael

https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind

https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

[00:14:42] Mirror Learning, Grudzien, Kuba et al.

https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.

https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart

https://en.wikipedia.org/wiki/Goodhart%27s_law

[00:25:15] LLM ARChitect, Franzen et al.

https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf

[00:28:55] AlphaGo, Silver et al.

https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster

https://direct.mit.edu/isal/proceedings-pdf/isal2023/35/67/2354943/isal_a_00674.pdf

[00:31:30] Emergence of Pragmatics, Yuan et al.

https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.

https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett

https://plato.stanford.edu/entries/ethics-ai/

[00:39:25] Multi-Agent RL, Zhou et al.

https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.

https://arxiv.org/abs/2405.08597

  continue reading

232 حلقات

Artwork
iconمشاركة
 
Manage episode 467295186 series 2803422
المحتوى المقدم من Machine Learning Street Talk (MLST). يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Machine Learning Street Talk (MLST) أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Prof. Jakob Foerster, a leading AI researcher at Oxford University and Meta, and Chris Lu, a researcher at OpenAI -- they explain how AI is moving beyond just mimicking human behaviour to creating truly intelligent agents that can learn and solve problems on their own. Foerster champions open-source AI for responsible, decentralised development. He addresses AI scaling, goal misalignment (Goodhart's Law), and the need for holistic alignment, offering a quick look at the future of AI and how to guide it.

SPONSOR MESSAGES:

***

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Check out their super fast DeepSeek R1 hosting!

https://centml.ai/pricing/

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT/REFS:

https://www.dropbox.com/scl/fi/yqjszhntfr00bhjh6t565/JAKOB.pdf?rlkey=scvny4bnwj8th42fjv8zsfu2y&dl=0

Prof. Jakob Foerster

https://x.com/j_foerst

https://www.jakobfoerster.com/

University of Oxford Profile:

https://eng.ox.ac.uk/people/jakob-foerster/

Chris Lu:

https://chrislu.page/

TOC

1. GPU Acceleration and Training Infrastructure

[00:00:00] 1.1 ARC Challenge Criticism and FLAIR Lab Overview

[00:01:25] 1.2 GPU Acceleration and Hardware Lottery in RL

[00:05:50] 1.3 Data Wall Challenges and Simulation-Based Solutions

[00:08:40] 1.4 JAX Implementation and Technical Acceleration

2. Learning Frameworks and Policy Optimization

[00:14:18] 2.1 Evolution of RL Algorithms and Mirror Learning Framework

[00:15:25] 2.2 Meta-Learning and Policy Optimization Algorithms

[00:21:47] 2.3 Language Models and Benchmark Challenges

[00:28:15] 2.4 Creativity and Meta-Learning in AI Systems

3. Multi-Agent Systems and Decentralization

[00:31:24] 3.1 Multi-Agent Systems and Emergent Intelligence

[00:38:35] 3.2 Swarm Intelligence vs Monolithic AGI Systems

[00:42:44] 3.3 Democratic Control and Decentralization of AI Development

[00:46:14] 3.4 Open Source AI and Alignment Challenges

[00:49:31] 3.5 Collaborative Models for AI Development

REFS

[[00:00:05] ARC Benchmark, Chollet

https://github.com/fchollet/ARC-AGI

[00:03:05] DRL Doesn't Work, Irpan

https://www.alexirpan.com/2018/02/14/rl-hard.html

[00:05:55] AI Training Data, Data Provenance Initiative

https://www.nytimes.com/2024/07/19/technology/ai-data-restrictions.html

[00:06:10] JaxMARL, Foerster et al.

https://arxiv.org/html/2311.10090v5

[00:08:50] M-FOS, Lu et al.

https://arxiv.org/abs/2205.01447

[00:09:45] JAX Library, Google Research

https://github.com/jax-ml/jax

[00:12:10] Kinetix, Mike and Michael

https://arxiv.org/abs/2410.23208

[00:12:45] Genie 2, DeepMind

https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/

[00:14:42] Mirror Learning, Grudzien, Kuba et al.

https://arxiv.org/abs/2208.01682

[00:16:30] Discovered Policy Optimisation, Lu et al.

https://arxiv.org/abs/2210.05639

[00:24:10] Goodhart's Law, Goodhart

https://en.wikipedia.org/wiki/Goodhart%27s_law

[00:25:15] LLM ARChitect, Franzen et al.

https://github.com/da-fr/arc-prize-2024/blob/main/the_architects.pdf

[00:28:55] AlphaGo, Silver et al.

https://arxiv.org/pdf/1712.01815.pdf

[00:30:10] Meta-learning, Lu, Towers, Foerster

https://direct.mit.edu/isal/proceedings-pdf/isal2023/35/67/2354943/isal_a_00674.pdf

[00:31:30] Emergence of Pragmatics, Yuan et al.

https://arxiv.org/abs/2001.07752

[00:34:30] AI Safety, Amodei et al.

https://arxiv.org/abs/1606.06565

[00:35:45] Intentional Stance, Dennett

https://plato.stanford.edu/entries/ethics-ai/

[00:39:25] Multi-Agent RL, Zhou et al.

https://arxiv.org/pdf/2305.10091

[00:41:00] Open Source Generative AI, Foerster et al.

https://arxiv.org/abs/2405.08597

  continue reading

232 حلقات

Tous les épisodes

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل