![We Have The Receipts podcast artwork](https://cdn.player.fm/images/37350108/series/3hptiqPGSZRELxyS/32.jpg 32w, https://cdn.player.fm/images/37350108/series/3hptiqPGSZRELxyS/64.jpg 64w, https://cdn.player.fm/images/37350108/series/3hptiqPGSZRELxyS/128.jpg 128w, https://cdn.player.fm/images/37350108/series/3hptiqPGSZRELxyS/256.jpg 256w, https://cdn.player.fm/images/37350108/series/3hptiqPGSZRELxyS/512.jpg 512w)
![We Have The Receipts podcast artwork](/static/images/64pixel.png)
برعاية
DeepSeek's Multi-Head Latent Attention (MLA) offers a novel solution to the memory and computational limitations of Large Language Models (LLMs). Traditional LLMs struggle with long-form text generation due to the growing storage and processing demands of tracking previously generated tokens. MLA addresses this by compressing token information into a lower-dimensional space, resulting in a smaller memory footprint, faster token retrieval, and improved computational efficiency. This allows for longer context windows and better scalability, making advanced AI models more accessible. The approach enhances performance without sacrificing quality, benefiting various applications from chatbots to document summarization.
Podcast:
https://kabir.buzzsprout.com
YouTube:
https://www.youtube.com/@kabirtechdives
Please subscribe and share.
191 حلقات
DeepSeek's Multi-Head Latent Attention (MLA) offers a novel solution to the memory and computational limitations of Large Language Models (LLMs). Traditional LLMs struggle with long-form text generation due to the growing storage and processing demands of tracking previously generated tokens. MLA addresses this by compressing token information into a lower-dimensional space, resulting in a smaller memory footprint, faster token retrieval, and improved computational efficiency. This allows for longer context windows and better scalability, making advanced AI models more accessible. The approach enhances performance without sacrificing quality, benefiting various applications from chatbots to document summarization.
Podcast:
https://kabir.buzzsprout.com
YouTube:
https://www.youtube.com/@kabirtechdives
Please subscribe and share.
191 حلقات
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.