Artwork

المحتوى المقدم من Foojay.io. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Foojay.io أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Agents, MCP, and Graph Databases: Java Developers Navigate the AI Revolution (#86)

1:03:35
 
مشاركة
 

Manage episode 523958277 series 3366865
المحتوى المقدم من Foojay.io. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Foojay.io أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

The AI revolution isn't replacing Java developers. No, it's forcing us to think harder.

Welcome to another episode of the Foojay Podcast! Today, we're talking about AI and Java, how it's changing the way we work, what we need to watch out for, and why understanding what's really happening matters more than ever.

I recorded interviews at Devoxx and JFall and spoke with people who build and use this technology every day.

Marianne Hoornenborg opened my eyes to something important: every time an AI generates a token, there's a massive amount of computation happening behind the scenes.

Viktor Gamov and Baruch Sadogursky did something really cool: they tested six different AI coding tools live on stage with the same task. The results were all over the place! But they found that the tools with access to good documentation performed much better.

Stephen Chin showed me how graph databases can make AI responses more reliable by providing a solid source of truth rather than relying on vector search.

Mario Fusco works on LangChain4J, a leading Java framework for AI. He explained that breaking down large tasks into smaller ones and using specialized agents can help reduce errors—hallucinations, as they're called.

Jeroen Benckhuijsen and Martijn Dashorst shared their experiences working with enterprise Java. Even as frameworks are becoming lighter and we're running everything in containers, there are still complex problems that require real developer expertise.

Maarten Mulders reminds us that AI is a tool, not a replacement—especially when you're solving problems no one has tackled before. You still need to know what you're doing.

And finally, Simon Maple from Tessel discussed moving beyond vibe coding towards a more reliable, production-ready approach, using specifications to guide AI tools.

00:00 Introduction of topics and guests

02:12 Marianne Hoornenborg

06:54 Viktor Gamov and Baruch Sadogursky

16:24 Stephen Chin

23:09 Mario Fusco

35:43 Jeroen Benckhuijsen

41:44 Martijn Dashorst

49:37 Maarten Mulders

56:13 Simon Maple

01:02:12 Conclusion

  continue reading

90 حلقات

Artwork
iconمشاركة
 
Manage episode 523958277 series 3366865
المحتوى المقدم من Foojay.io. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Foojay.io أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

The AI revolution isn't replacing Java developers. No, it's forcing us to think harder.

Welcome to another episode of the Foojay Podcast! Today, we're talking about AI and Java, how it's changing the way we work, what we need to watch out for, and why understanding what's really happening matters more than ever.

I recorded interviews at Devoxx and JFall and spoke with people who build and use this technology every day.

Marianne Hoornenborg opened my eyes to something important: every time an AI generates a token, there's a massive amount of computation happening behind the scenes.

Viktor Gamov and Baruch Sadogursky did something really cool: they tested six different AI coding tools live on stage with the same task. The results were all over the place! But they found that the tools with access to good documentation performed much better.

Stephen Chin showed me how graph databases can make AI responses more reliable by providing a solid source of truth rather than relying on vector search.

Mario Fusco works on LangChain4J, a leading Java framework for AI. He explained that breaking down large tasks into smaller ones and using specialized agents can help reduce errors—hallucinations, as they're called.

Jeroen Benckhuijsen and Martijn Dashorst shared their experiences working with enterprise Java. Even as frameworks are becoming lighter and we're running everything in containers, there are still complex problems that require real developer expertise.

Maarten Mulders reminds us that AI is a tool, not a replacement—especially when you're solving problems no one has tackled before. You still need to know what you're doing.

And finally, Simon Maple from Tessel discussed moving beyond vibe coding towards a more reliable, production-ready approach, using specifications to guide AI tools.

00:00 Introduction of topics and guests

02:12 Marianne Hoornenborg

06:54 Viktor Gamov and Baruch Sadogursky

16:24 Stephen Chin

23:09 Mario Fusco

35:43 Jeroen Benckhuijsen

41:44 Martijn Dashorst

49:37 Maarten Mulders

56:13 Simon Maple

01:02:12 Conclusion

  continue reading

90 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل