As She Rises brings together local poets and activists from throughout North America to depict the effects of climate change on their home and their people. Each episode carries the listener to a new place through a collection of voices, local recordings and soundscapes. Stories span from the Louisiana Bayou, to the tundras of Alaska to the drying bed of the Colorado River. Centering the voices of native women and women of color, As She Rises personalizes the elusive magnitude of climate cha ...
…
continue reading
المحتوى المقدم من Matt Arnold. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Matt Arnold أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
Do AI As Engineering Instead
Manage episode 455629064 series 2862172
المحتوى المقدم من Matt Arnold. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Matt Arnold أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Current AI practice is not engineering, even when it aims for practical applications, because it is not based on scientific understanding. Enforcing engineering norms on the field could lead to considerably safer systems. https://betterwithout.ai/AI-as-engineering This episode has a lot of links! Here they are. Michael Nielsen’s “The role of ‘explanation’ in AI”. https://michaelnotebook.com/ongoing/sporadica.html#role_of_explanation_in_AI Subbarao Kambhampati’s “Changing the Nature of AI Research”. https://dl.acm.org/doi/pdf/10.1145/3546954 Chris Olah and his collaborators: “Thread: Circuits”. distill.pub/2020/circuits/ “An Overview of Early Vision in InceptionV1”. distill.pub/2020/circuits/early-vision/ Dai et al., “Knowledge Neurons in Pretrained Transformers”. https://arxiv.org/pdf/2104.08696.pdf Meng et al.: “Locating and Editing Factual Associations in GPT.” rome.baulab.info “Mass-Editing Memory in a Transformer,” https://arxiv.org/pdf/2210.07229.pdf François Chollet on image generators putting the wrong number of legs on horses: twitter.com/fchollet/status/1573879858203340800 Neel Nanda’s “Longlist of Theories of Impact for Interpretability”, https://www.lesswrong.com/posts/uK6sQCNMw8WKzJeCQ/a-longlist-of-theories-of-impact-for-interpretability Zachary C. Lipton’s “The Mythos of Model Interpretability”. https://arxiv.org/abs/1606.03490 Meng et al., “Locating and Editing Factual Associations in GPT”. https://arxiv.org/pdf/2202.05262.pdf Belrose et al., “Eliciting Latent Predictions from Transformers with the Tuned Lens”. https://arxiv.org/abs/2303.08112 “Progress measures for grokking via mechanistic interpretability”. https://arxiv.org/abs/2301.05217 Conmy et al., “Towards Automated Circuit Discovery for Mechanistic Interpretability”. https://arxiv.org/abs/2304.14997 Elhage et al., “Softmax Linear Units,” transformer-circuits.pub/2022/solu/index.html Filan et al., “Clusterability in Neural Networks,” https://arxiv.org/pdf/2103.03386.pdf Cammarata et al., “Curve circuits,” distill.pub/2020/circuits/curve-circuits/ You can support the podcast and get episodes a week early, by supporting the Patreon: https://www.patreon.com/m/fluidityaudiobooks If you like the show, consider buying me a coffee: https://www.buymeacoffee.com/mattarnold Original music by Kevin MacLeod. This podcast is under a Creative Commons Attribution Non-Commercial International 4.0 License.
…
continue reading
155 حلقات
Manage episode 455629064 series 2862172
المحتوى المقدم من Matt Arnold. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Matt Arnold أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Current AI practice is not engineering, even when it aims for practical applications, because it is not based on scientific understanding. Enforcing engineering norms on the field could lead to considerably safer systems. https://betterwithout.ai/AI-as-engineering This episode has a lot of links! Here they are. Michael Nielsen’s “The role of ‘explanation’ in AI”. https://michaelnotebook.com/ongoing/sporadica.html#role_of_explanation_in_AI Subbarao Kambhampati’s “Changing the Nature of AI Research”. https://dl.acm.org/doi/pdf/10.1145/3546954 Chris Olah and his collaborators: “Thread: Circuits”. distill.pub/2020/circuits/ “An Overview of Early Vision in InceptionV1”. distill.pub/2020/circuits/early-vision/ Dai et al., “Knowledge Neurons in Pretrained Transformers”. https://arxiv.org/pdf/2104.08696.pdf Meng et al.: “Locating and Editing Factual Associations in GPT.” rome.baulab.info “Mass-Editing Memory in a Transformer,” https://arxiv.org/pdf/2210.07229.pdf François Chollet on image generators putting the wrong number of legs on horses: twitter.com/fchollet/status/1573879858203340800 Neel Nanda’s “Longlist of Theories of Impact for Interpretability”, https://www.lesswrong.com/posts/uK6sQCNMw8WKzJeCQ/a-longlist-of-theories-of-impact-for-interpretability Zachary C. Lipton’s “The Mythos of Model Interpretability”. https://arxiv.org/abs/1606.03490 Meng et al., “Locating and Editing Factual Associations in GPT”. https://arxiv.org/pdf/2202.05262.pdf Belrose et al., “Eliciting Latent Predictions from Transformers with the Tuned Lens”. https://arxiv.org/abs/2303.08112 “Progress measures for grokking via mechanistic interpretability”. https://arxiv.org/abs/2301.05217 Conmy et al., “Towards Automated Circuit Discovery for Mechanistic Interpretability”. https://arxiv.org/abs/2304.14997 Elhage et al., “Softmax Linear Units,” transformer-circuits.pub/2022/solu/index.html Filan et al., “Clusterability in Neural Networks,” https://arxiv.org/pdf/2103.03386.pdf Cammarata et al., “Curve circuits,” distill.pub/2020/circuits/curve-circuits/ You can support the podcast and get episodes a week early, by supporting the Patreon: https://www.patreon.com/m/fluidityaudiobooks If you like the show, consider buying me a coffee: https://www.buymeacoffee.com/mattarnold Original music by Kevin MacLeod. This podcast is under a Creative Commons Attribution Non-Commercial International 4.0 License.
…
continue reading
155 حلقات
كل الحلقات
×مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.