Artwork

المحتوى المقدم من EDGE AI FOUNDATION. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة EDGE AI FOUNDATION أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Garbage In, Garbage Out - High-Quality Datasets for Edge ML Research

21:17
 
مشاركة
 

Manage episode 487010949 series 3574631
المحتوى المقدم من EDGE AI FOUNDATION. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة EDGE AI FOUNDATION أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

The EDGE AI FOUNDATION's Datasets & Benchmarks Working Group highlights the rapid progress in neural networks, particularly in cloud-based applications like image recognition and NLP, which benefited greatly from large, high-quality datasets. However, the constrained nature of edge AI devices necessitates smaller, more efficient models, yet a lack of suitable datasets hinders progress and realistic evaluation in this area. To address this, the Foundation aims to create and maintain a repository of production-grade, diverse, and well-annotated datasets for tiny and edge ML use cases, enabling fair comparisons and the advancement of the field. They emphasize community involvement in contributing datasets, providing feedback, and establishing best practices for optimization. Ultimately, this initiative seeks to level the playing field for edge AI research by providing the necessary resources for accurate benchmarking and innovation.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

فصول

1. Introduction to Edge AI Challenges (00:00:00)

2. Cloud vs Edge: Different Data Needs (00:01:55)

3. The Problem with "Toy Examples" (00:04:03)

4. Edge AI Foundation's Repository Solution (00:06:30)

5. Technical Requirements Framework (00:09:06)

6. Data Quality Strategy and Focus Areas (00:12:22)

7. Community Participation and Call to Action (00:15:30)

8. Key Takeaways and Future Impact (00:18:12)

57 حلقات

Artwork
iconمشاركة
 
Manage episode 487010949 series 3574631
المحتوى المقدم من EDGE AI FOUNDATION. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة EDGE AI FOUNDATION أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

The EDGE AI FOUNDATION's Datasets & Benchmarks Working Group highlights the rapid progress in neural networks, particularly in cloud-based applications like image recognition and NLP, which benefited greatly from large, high-quality datasets. However, the constrained nature of edge AI devices necessitates smaller, more efficient models, yet a lack of suitable datasets hinders progress and realistic evaluation in this area. To address this, the Foundation aims to create and maintain a repository of production-grade, diverse, and well-annotated datasets for tiny and edge ML use cases, enabling fair comparisons and the advancement of the field. They emphasize community involvement in contributing datasets, providing feedback, and establishing best practices for optimization. Ultimately, this initiative seeks to level the playing field for edge AI research by providing the necessary resources for accurate benchmarking and innovation.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

فصول

1. Introduction to Edge AI Challenges (00:00:00)

2. Cloud vs Edge: Different Data Needs (00:01:55)

3. The Problem with "Toy Examples" (00:04:03)

4. Edge AI Foundation's Repository Solution (00:06:30)

5. Technical Requirements Framework (00:09:06)

6. Data Quality Strategy and Focus Areas (00:12:22)

7. Community Participation and Call to Action (00:15:30)

8. Key Takeaways and Future Impact (00:18:12)

57 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل