Artwork

المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Machine Learning Models: Fine-Tuning for Success

9:29
 
مشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444601107 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode, we delve into a fascinating lecture about machine learning models and the challenges they face when they don’t perform as expected. Professor Eugene Ragi shares key techniques to fine-tune models, emphasizing the importance of data quality and feature engineering. The discussion explores ensemble learning, hyperparameters, and how intuition plays a critical role in the success of machine learning algorithms.

Key Points

  • [00:00] Professor Eugene Ragi begins by highlighting how machine learning models often fail due to poor data quality, stressing the importance of refining both the model and the data fed into it​.
  • [02:10] Emphasizes the necessity of data balancing. Using an example of health prediction models, Ragi discusses how imbalanced data can skew results, especially when there is far more data on healthy individuals than those who are sick​.
  • [04:30] Introduction to ensemble learning, which involves using multiple models that collaborate to solve the same problem. He likens this to a team of specialists, each with unique strengths, improving the overall prediction accuracy​.
  • [06:45] Professor Ragi warns that simply combining weak models doesn’t guarantee success. He stresses that for ensemble learning to work, the individual models must bring diverse perspectives, not just replicate the same approach​.
  • [08:15] A detailed explanation of hyperparameters follows. These are parameters set by the engineer before training begins, fine-tuning how a model learns. Ragi compares this process to adjusting the dials on a race car engine​.
  • [10:00] The professor introduces the role of optimizers, which guide the model through complex problem-solving. Different optimizers have their own strategies, and choosing the right one depends on the task at hand​.
  • [12:20] Ragi points out that model performance should always be judged in the context of its application. A 90% accuracy rate might be great for recommending movies but could be disastrous in medical diagnoses​.
  • [13:50] He introduces an unexpected element in machine learning: intuition. While models are data-driven, experience and intuition play a key role in selecting the right techniques and methods to solve specific problems​.

Additional Resources

  • Machine Learning Documentation: Link
  • Ensemble Learning Techniques: Link

CSE805L19

  continue reading

20 حلقات

Artwork
iconمشاركة
 

سلسلة مؤرشفة ("تلقيمة معطلة" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? تلقيمة معطلة status. لم تتمكن خوادمنا من جلب تلقيمة بودكاست صحيحة لفترة طويلة.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444601107 series 3603581
المحتوى المقدم من Daryl Taylor. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Daryl Taylor أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

In this episode, we delve into a fascinating lecture about machine learning models and the challenges they face when they don’t perform as expected. Professor Eugene Ragi shares key techniques to fine-tune models, emphasizing the importance of data quality and feature engineering. The discussion explores ensemble learning, hyperparameters, and how intuition plays a critical role in the success of machine learning algorithms.

Key Points

  • [00:00] Professor Eugene Ragi begins by highlighting how machine learning models often fail due to poor data quality, stressing the importance of refining both the model and the data fed into it​.
  • [02:10] Emphasizes the necessity of data balancing. Using an example of health prediction models, Ragi discusses how imbalanced data can skew results, especially when there is far more data on healthy individuals than those who are sick​.
  • [04:30] Introduction to ensemble learning, which involves using multiple models that collaborate to solve the same problem. He likens this to a team of specialists, each with unique strengths, improving the overall prediction accuracy​.
  • [06:45] Professor Ragi warns that simply combining weak models doesn’t guarantee success. He stresses that for ensemble learning to work, the individual models must bring diverse perspectives, not just replicate the same approach​.
  • [08:15] A detailed explanation of hyperparameters follows. These are parameters set by the engineer before training begins, fine-tuning how a model learns. Ragi compares this process to adjusting the dials on a race car engine​.
  • [10:00] The professor introduces the role of optimizers, which guide the model through complex problem-solving. Different optimizers have their own strategies, and choosing the right one depends on the task at hand​.
  • [12:20] Ragi points out that model performance should always be judged in the context of its application. A 90% accuracy rate might be great for recommending movies but could be disastrous in medical diagnoses​.
  • [13:50] He introduces an unexpected element in machine learning: intuition. While models are data-driven, experience and intuition play a key role in selecting the right techniques and methods to solve specific problems​.

Additional Resources

  • Machine Learning Documentation: Link
  • Ensemble Learning Techniques: Link

CSE805L19

  continue reading

20 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل