Artwork

المحتوى المقدم من Jan-Willem Wasmann. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Jan-Willem Wasmann أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Bayesian Active Learning in Audiology

48:41
 
مشاركة
 

Manage episode 325925475 series 3339931
المحتوى المقدم من Jan-Willem Wasmann. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Jan-Willem Wasmann أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Here we discuss with Josef Schlittenlacher (ManCAD), Bert de Vries (TUe) and Dennis Barbour (WashU st. Louis) the potential of Bayesian active learning in audiology, in medicine, and beyond.
Quotes from the interview:
Dennis: 'No Bayesianists are born, they are all converted' (origin unknown)
Josef: The audiogram is the ideal testbed for Bayesian active learning.'
Bert's favorite quote: “Everything is the way it is because it got that way” (D'Arcy Wentworth Thompson, 1860--1948)
The later quote reflects on the idea that everything evolved to where it is now. It’s not a quote from the Free Energy Principle but it has everything to do with it. The hearing system evolved to where it is now. To design proper hearing aid algorithms, we should not focus on the best algorithm but rather on an adaptation process that converges to better algorithms than before.
Further reading and exploring:
- https://computationalaudiology.com/bayesian-active-learning-in-audiology/
- https://computationalaudiology.com/for-professionals/
- Audiogram estimation using Bayesian active learning, https://doi.org/10.1121/1.5047436
- Online Machine Learning Audiometry, https://pubmed.ncbi.nlm.nih.gov/30358656/
- Bayesian Pure-Tone Audiometry Through Active Learning Under Informed Priors, https://www.frontiersin.org/articles/10.3389/fdgth.2021.723348/full
- Digital Approaches to Automated and Machine Learning Assessments of Hearing: Scoping Review, https://www.jmir.org/2022/2/e32581

  continue reading

3 حلقات

Artwork
iconمشاركة
 
Manage episode 325925475 series 3339931
المحتوى المقدم من Jan-Willem Wasmann. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Jan-Willem Wasmann أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Here we discuss with Josef Schlittenlacher (ManCAD), Bert de Vries (TUe) and Dennis Barbour (WashU st. Louis) the potential of Bayesian active learning in audiology, in medicine, and beyond.
Quotes from the interview:
Dennis: 'No Bayesianists are born, they are all converted' (origin unknown)
Josef: The audiogram is the ideal testbed for Bayesian active learning.'
Bert's favorite quote: “Everything is the way it is because it got that way” (D'Arcy Wentworth Thompson, 1860--1948)
The later quote reflects on the idea that everything evolved to where it is now. It’s not a quote from the Free Energy Principle but it has everything to do with it. The hearing system evolved to where it is now. To design proper hearing aid algorithms, we should not focus on the best algorithm but rather on an adaptation process that converges to better algorithms than before.
Further reading and exploring:
- https://computationalaudiology.com/bayesian-active-learning-in-audiology/
- https://computationalaudiology.com/for-professionals/
- Audiogram estimation using Bayesian active learning, https://doi.org/10.1121/1.5047436
- Online Machine Learning Audiometry, https://pubmed.ncbi.nlm.nih.gov/30358656/
- Bayesian Pure-Tone Audiometry Through Active Learning Under Informed Priors, https://www.frontiersin.org/articles/10.3389/fdgth.2021.723348/full
- Digital Approaches to Automated and Machine Learning Assessments of Hearing: Scoping Review, https://www.jmir.org/2022/2/e32581

  continue reading

3 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل