Artwork

المحتوى المقدم من Alex Molak. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alex Molak أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Autonomous Driving, Causality & Long Tails || Daniel Ebenhöch || Causal Bandits Ep. 004 (2023)

52:11
 
مشاركة
 

Manage episode 386156129 series 3526805
المحتوى المقدم من Alex Molak. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alex Molak أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Send us a text

Support the show
Video version available on YouTube
Recorded on Aug 27, 2023 in München, Germany
Is Causality Necessary For Autonomous Driving?
From a child experimenter to a lead engineer working on a general causal inference engine, Daniel's choices have been marked by intense curiosity and the courage to take risks.
Daniel shares how working with mathematicians differs from working with physicists and how having both on the team makes the team stronger.
We discuss the journey Daniel and his team took to build a system that allows performing the abduction step on a broad class of models in a computationally efficient way - a prerequisite to build a practically valuable counterfactual reasoning system.
Finally, Daniel shares his experiences in communicating with stakeholders and offers advice for those of us who only begin their journey with causality.
Ready?
About The Guest
Daniel Ebenhöch is a Lead Engineer at e:fs Techhub. His research is focused on autonomous driving and automated decision-making. He leads a diverse team of scientists and developers, working on a general SCM-based causal inference engine.
Connect with Daniel:
- Daniel Ebenhöch on LinkedIn
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet
Links
Packages
- PGMpy (https://pgmpy.org/)
Books
- Molak (2023) - Causal Inference and Discovery in Python
- Pearl (2009) - Causality
- Peters et al. (2017) - Elements of Causal Inference: Foundations and Learning Algorithms
Causal Bandits Team
Project Coordinator: Taiba Malik
Video and Audio Editing: Na

Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

فصول

1. Autonomous Driving, Causality & Long Tails || Daniel Ebenhöch || Causal Bandits Ep. 004 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:12:14)

3. (Cont.) Autonomous Driving, Causality & Long Tails || Daniel Ebenhöch || Causal Bandits Ep. 004 (2023) (00:13:03)

29 حلقات

Artwork
iconمشاركة
 
Manage episode 386156129 series 3526805
المحتوى المقدم من Alex Molak. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Alex Molak أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Send us a text

Support the show
Video version available on YouTube
Recorded on Aug 27, 2023 in München, Germany
Is Causality Necessary For Autonomous Driving?
From a child experimenter to a lead engineer working on a general causal inference engine, Daniel's choices have been marked by intense curiosity and the courage to take risks.
Daniel shares how working with mathematicians differs from working with physicists and how having both on the team makes the team stronger.
We discuss the journey Daniel and his team took to build a system that allows performing the abduction step on a broad class of models in a computationally efficient way - a prerequisite to build a practically valuable counterfactual reasoning system.
Finally, Daniel shares his experiences in communicating with stakeholders and offers advice for those of us who only begin their journey with causality.
Ready?
About The Guest
Daniel Ebenhöch is a Lead Engineer at e:fs Techhub. His research is focused on autonomous driving and automated decision-making. He leads a diverse team of scientists and developers, working on a general SCM-based causal inference engine.
Connect with Daniel:
- Daniel Ebenhöch on LinkedIn
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet
Links
Packages
- PGMpy (https://pgmpy.org/)
Books
- Molak (2023) - Causal Inference and Discovery in Python
- Pearl (2009) - Causality
- Peters et al. (2017) - Elements of Causal Inference: Foundations and Learning Algorithms
Causal Bandits Team
Project Coordinator: Taiba Malik
Video and Audio Editing: Na

Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

فصول

1. Autonomous Driving, Causality & Long Tails || Daniel Ebenhöch || Causal Bandits Ep. 004 (2023) (00:00:00)

2. [Ad] Rumi.ai (00:12:14)

3. (Cont.) Autonomous Driving, Causality & Long Tails || Daniel Ebenhöch || Causal Bandits Ep. 004 (2023) (00:13:03)

29 حلقات

Semua episod

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

استمع إلى هذا العرض أثناء الاستكشاف
تشغيل