Artwork

المحتوى المقدم من Breaking Math, Gabriel Hesch, and Autumn Phaneuf. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Breaking Math, Gabriel Hesch, and Autumn Phaneuf أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

90. LEAN Theorem Provers used to model Physics and Chemistry

47:26
 
مشاركة
 

Manage episode 406821168 series 1358022
المحتوى المقدم من Breaking Math, Gabriel Hesch, and Autumn Phaneuf. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Breaking Math, Gabriel Hesch, and Autumn Phaneuf أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This episode is inspired by a correspondence the Breaking Math Podcast had with the editors of Digital Discovery, a journal by the Royal Society of Chemistry. In this episode the hosts review a paper about how the Lean Interactive Theorem Prover, which is usually used as a tool in creating mathemtics proofs, can be used to create rigorous and robust models in physics and chemistry.

Also - we have a brand new member of the Breaking Math Team! This episode is the debut episode for Autumn, CEO of Cosmo Labs, occasional co-host / host of the Breaking Math Podcast, and overall contributor who has been working behind the scenes on the podcast on branding and content for the last several months. Welcome Autumn!

Autumn and Gabe discuss how the paper explores the use of interactive theorem provers to ensure the accuracy of scientific theories and make them machine-readable. The episode discusses the limitations and potential of interactive theorem provers and highlights the themes of precision and formal verification in scientific knowledge. This episode also provide resources (listed below) for listeners interested in learning more about working with the LEAN interactive theorem prover.

Takeaways

  • Interactive theorem provers can revolutionize the way scientific theories are formulated and verified, ensuring mathematical certainty and minimizing errors.
  • Interactive theorem provers require a high level of mathematical knowledge and may not be accessible to all scientists and engineers.
  • Formal verification using interactive theorem provers can eliminate human error and hidden assumptions, leading to more confident and reliable scientific findings.
  • Interactive theorem provers promote clear communication and collaboration across disciplines by forcing explicit definitions and minimizing ambiguities in scientific language. Lean Theorem Provers enable scientists to construct modular and reusable proofs, accelerating the pace of knowledge acquisition.
  • Formal verification presents challenges in terms of transforming informal proofs into a formal language and bridging the reality gap.
  • Integration of theorem provers and machine learning has the potential to enhance creativity, verification, and usefulness of machine learning models.
  • The limitations and variables in formal verification require rigorous validation against experimental data to ensure real-world accuracy.
  • Lean Theorem Provers have the potential to provide unwavering trust, accelerate innovation, and increase accessibility in scientific research.
  • AI as a scientific partner can automate the formalization of informal theories and suggest new conjectures, revolutionizing scientific exploration.
  • The impact of Lean Theorem Provers on humanity includes a shift in scientific validity, rapid scientific breakthroughs, and democratization of science.

Help Support The Podcast by clicking on the links below:

  continue reading

137 حلقات

Artwork
iconمشاركة
 
Manage episode 406821168 series 1358022
المحتوى المقدم من Breaking Math, Gabriel Hesch, and Autumn Phaneuf. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Breaking Math, Gabriel Hesch, and Autumn Phaneuf أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This episode is inspired by a correspondence the Breaking Math Podcast had with the editors of Digital Discovery, a journal by the Royal Society of Chemistry. In this episode the hosts review a paper about how the Lean Interactive Theorem Prover, which is usually used as a tool in creating mathemtics proofs, can be used to create rigorous and robust models in physics and chemistry.

Also - we have a brand new member of the Breaking Math Team! This episode is the debut episode for Autumn, CEO of Cosmo Labs, occasional co-host / host of the Breaking Math Podcast, and overall contributor who has been working behind the scenes on the podcast on branding and content for the last several months. Welcome Autumn!

Autumn and Gabe discuss how the paper explores the use of interactive theorem provers to ensure the accuracy of scientific theories and make them machine-readable. The episode discusses the limitations and potential of interactive theorem provers and highlights the themes of precision and formal verification in scientific knowledge. This episode also provide resources (listed below) for listeners interested in learning more about working with the LEAN interactive theorem prover.

Takeaways

  • Interactive theorem provers can revolutionize the way scientific theories are formulated and verified, ensuring mathematical certainty and minimizing errors.
  • Interactive theorem provers require a high level of mathematical knowledge and may not be accessible to all scientists and engineers.
  • Formal verification using interactive theorem provers can eliminate human error and hidden assumptions, leading to more confident and reliable scientific findings.
  • Interactive theorem provers promote clear communication and collaboration across disciplines by forcing explicit definitions and minimizing ambiguities in scientific language. Lean Theorem Provers enable scientists to construct modular and reusable proofs, accelerating the pace of knowledge acquisition.
  • Formal verification presents challenges in terms of transforming informal proofs into a formal language and bridging the reality gap.
  • Integration of theorem provers and machine learning has the potential to enhance creativity, verification, and usefulness of machine learning models.
  • The limitations and variables in formal verification require rigorous validation against experimental data to ensure real-world accuracy.
  • Lean Theorem Provers have the potential to provide unwavering trust, accelerate innovation, and increase accessibility in scientific research.
  • AI as a scientific partner can automate the formalization of informal theories and suggest new conjectures, revolutionizing scientific exploration.
  • The impact of Lean Theorem Provers on humanity includes a shift in scientific validity, rapid scientific breakthroughs, and democratization of science.

Help Support The Podcast by clicking on the links below:

  continue reading

137 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع