Artwork

المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Orca 2: Enhancing Reasoning in Smaller Language Models - Technical Details

8:48
 
مشاركة
 

Manage episode 421181730 series 3474159
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

355 حلقات

Artwork
iconمشاركة
 
Manage episode 421181730 series 3474159
المحتوى المقدم من HackerNoon. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة HackerNoon أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

355 حلقات

모든 에피소드

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع

حقوق الطبع والنشر 2025 | سياسة الخصوصية | شروط الخدمة | | حقوق النشر
استمع إلى هذا العرض أثناء الاستكشاف
تشغيل