Player FM - Internet Radio Done Right
17 subscribers
Checked 1M ago
تمت الإضافة منذ قبل five أعوام
المحتوى المقدم من Aaron Stump. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Aaron Stump أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
Iowa Type Theory Commute
وسم كل الحلقات كغير/(كـ)مشغلة
Manage series 2823367
المحتوى المقدم من Aaron Stump. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Aaron Stump أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Aaron Stump talks about type theory, computational logic, and related topics in Computer Science on his short commute.
…
continue reading
175 حلقات
وسم كل الحلقات كغير/(كـ)مشغلة
Manage series 2823367
المحتوى المقدم من Aaron Stump. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Aaron Stump أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Aaron Stump talks about type theory, computational logic, and related topics in Computer Science on his short commute.
…
continue reading
175 حلقات
كل الحلقات
×I
Iowa Type Theory Commute

1 Correction: the Correct Author of the Proof from Last Episode, and an AI flop 7:10
7:10
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب7:10
I correct what I said in the last episode about the author of the proof of FD from last episode based on intersection types. I also describe AI flopping when I ask it a question about this.
I
Iowa Type Theory Commute

1 Krivine's Proof of FD, Using Intersection Types 21:35
21:35
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب21:35
Krivine's book (Section 4.2) has a proof of the Finite Developments Theorem, based on intersection types. I discuss this proof in this episode.
I
Iowa Type Theory Commute

1 A Measure-Based Proof of Finite Developments 23:24
23:24
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب23:24
I discuss the paper "A Direct Proof of the Finite Developments Theorem" , by Roel de Vrijer. See also the write-up at my blog.
I
Iowa Type Theory Commute

1 Introduction to the Finite Developments Theorem 15:54
15:54
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب15:54
The finite developments theorem in pure lambda calculus says that if you select as set of redexes in a lambda term and reduce only those and their residuals (redexes that can be traced back as existing in the original set), then this process will always terminate. In this episode, I discuss the theorem and why I got interested in it.…
I
Iowa Type Theory Commute

In this episode, I discuss the paper Nominal Techniques in Isabelle/HOL , by Christian Urban. This paper shows how to reason with terms modulo alpha-equivalence, using ideas from nominal logic. The basic idea is that instead of renamings, one works with permutations of names.
I
Iowa Type Theory Commute

I discuss what is called the locally nameless representation of syntax with binders, following the first couple of sections of the very nicely written paper "The Locally Nameless Representation," by Charguéraud. I complain due to the statement in the paper that "the theory of λ-calculus identifies terms that are α-equivalent," which is simply not true if one is considering lambda calculus as defined by Church, where renaming is an explicit reduction step, on a par with beta-reduction. I also answer a listener's question about what "computational type theory" means. Feel free to email me any time at aaron.stump@bc.edu, or join the Telegram group for the podcast.…
I
Iowa Type Theory Commute

I discuss the paper POPLmark Reloaded: Mechanizing Proofs by Logical Relations , which proposes a benchmark problem for mechanizing Programming Language theory.
I
Iowa Type Theory Commute

I continue the discussion of POPLmark Reloaded , discussing the solutions proposed to the benchmark problem. The solutions are in the Beluga, Coq (recently renamed Rocq), and Agda provers.
I
Iowa Type Theory Commute

1 Introduction to Formalizing Programming Languages Theory 12:20
12:20
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب12:20
In this episode, I begin discussing the question and history of formalizing results in Programming Languages Theory using interactive theorem provers like Rocq (formerly Coq) and Agda.
I
Iowa Type Theory Commute

1 Turing's proof of normalization for STLC 17:39
17:39
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب17:39
In this episode, I describe the first proof of normalization for STLC, written by Alan Turing in the 1940s. See this short note for Turing's original proof and some historical comments.
I
Iowa Type Theory Commute

In this episode, after a quick review of the preceding couple, I discuss the property of normalization for STLC, and talk a bit about proof methods. We will look at proofs in more detail in the coming episodes. Feel free to join the Telegram group for the podcast if you want to discuss anything (or just email me at aaron.stump@gmail.com).…
I
Iowa Type Theory Commute

1 Arithmetic operations in simply typed lambda calculus 9:56
9:56
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب9:56
It is maybe not so well known that arithmetic operations -- at least some of them -- can be implemented in simply typed lambda calculus (STLC). Church-encoded numbers can be given the simple type (A -> A) -> A -> A, for any simple type A. If we abbreviate that type as Nat_A, then addition and multiplication can both be typed in STLC, at type Nat_A -> Nat_A -> Nat_A. Interestingly, things change with exponentiation, which we will consider in the next episode.…
I
Iowa Type Theory Commute

1 The curious case of exponentiation in simply typed lambda calculus 7:29
7:29
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب7:29
Like addition and multiplication on Church-encoded numbers, exponentiation can be assigned a type in simply typed lambda calculus (STLC). But surprisingly, the type is non-uniform. If we abbreviate (A -> A) -> A -> A as Nat_A, then exponentiation, which is defined as \ x . \ y . y x, can be assigned type Nat_A -> Nat_(A -> A) -> Nat_A. The second argument needs to have type at strictly higher order than the first argument. This has the fascinating consequence that we cannot define self-exponentiation, \ x . exp x x. That term would reduce to \ x . x x, which is provably not typable in STLC.…
I
Iowa Type Theory Commute

I review the typing rules and some basic examples for STLC. I also remind listeners of the Curry-Howard isomorphism for STLC.
I
Iowa Type Theory Commute

In this episode, after a pretty long hiatus, I start a new chapter on simply typed lambda calculus. I present the typing rules and give some basic examples. Subsequent episodes will discuss various interesting nuances...
مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.