Interviews, dossiers, chroniques... Chaque semaine depuis 2010, Podcast Science vous fait découvrir un sujet scientifique. Retrouvez nous sur PodcastScience.fm Soutenez nous sur Patreon Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
…
continue reading
المحتوى المقدم من Choses à Savoir. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Choses à Savoir أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !
Choses à Savoir SCIENCES
وسم كل الحلقات كغير/(كـ)مشغلة
Manage series 122843
المحتوى المقدم من Choses à Savoir. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Choses à Savoir أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Développez facilement votre culture scientifique grâce à un podcast quotidien !
…
continue reading
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
2757 حلقات
وسم كل الحلقات كغير/(كـ)مشغلة
Manage series 122843
المحتوى المقدم من Choses à Savoir. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة Choses à Savoir أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Développez facilement votre culture scientifique grâce à un podcast quotidien !
…
continue reading
Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
2757 حلقات
All episodes
×C
Choses à Savoir SCIENCES


1 Quelles sont les zones les plus érogènes du corps humain selon la science ? 2:02
2:02
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:02
Le corps humain est un véritable orchestre sensoriel, et certaines zones sont bien plus sensibles que d'autres. Ce sont les fameuses zones érogènes, capables de provoquer du plaisir par une simple caresse, une pression ou un frôlement. Mais au-delà des clichés, qu’en dit la science ? Une grande étude menée par Oliver Turnbull et ses collègues, publiée en 2014 dans Archives of Sexual Behavior, a interrogé plus de 800 hommes et femmes pour établir une carte précise de la sensibilité érogène. Sans surprise, ce sont les organes génitaux qui arrivent en tête. Le clitoris décroche un score parfait de 100 %, suivi de près par le pénis avec 96 %. Chez les femmes, le vagin et les seins suivent de près, tandis que chez les hommes, les testicules et les lèvres sont jugés très érogènes. D’ailleurs, les lèvres, toutes sexes confondus, obtiennent un score moyen de 88 %. Mais l’étude révèle aussi que plusieurs zones non génitales sont hautement érogènes. La nuque, par exemple, est notée à 84 %, ce qui en fait une zone presque aussi stimulante que les organes sexuels. Les seins ou la poitrine suivent avec 79 %, tandis que l’intérieur des cuisses obtient 70 %. Même les oreilles, souvent négligées, atteignent 66 % de score érogène moyen. Fait surprenant : des zones inattendues comme les fesses (60 %), le ventre (55 %) ou même les doigts (50 %) sont également jugées très sensibles. Quant aux pieds (40 %) et au creux des genoux (38 %), ils confirment que le plaisir peut surgir là où on l’attend le moins. Même les orteils affichent un respectable 31 % ! L’étude souligne aussi que la perception du plaisir est subjective, influencée par l’expérience, la psychologie et le contexte. Ce que l’un juge électrisant, l’autre peut trouver indifférent. Par ailleurs, des travaux en imagerie cérébrale, notamment ceux menés à l’université Rutgers, ont révélé que ces stimulations activent des zones cérébrales liées à l’émotion, comme l’amygdale, en plus des aires sensorielles. En somme, la science montre que notre corps est un territoire érogène bien plus vaste que les idées reçues ne le laissent croire. Et surtout : la carte du plaisir varie d’un individu à l’autre. Alors, explorez avec respect, écoute… et curiosité ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Pourquoi Joseph Vallot est-il un scientifique hors norme ? 2:24
2:24
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:24
Quand on évoque les grands explorateurs des cimes, le nom de Joseph Vallot ne revient pas toujours en premier. Et pourtant, cet homme du XIXe siècle fut un pionnier dans un domaine où peu osaient s’aventurer : la science en haute montagne. Naturaliste, géographe, alpiniste, astronome et même météorologue, Joseph Vallot incarne une figure exceptionnelle de la science pluridisciplinaire, menée au sommet. Littéralement. Né en 1854 à Lodève, dans l’Hérault, Vallot est fasciné dès son plus jeune âge par les montagnes. Mais au lieu de s’en contenter comme terrain de jeu sportif, il les considère comme un laboratoire à ciel ouvert. Son obsession : comprendre le fonctionnement de la nature dans les conditions extrêmes de l’altitude. Une idée audacieuse à une époque où la médecine, la physique ou la biologie ne s’exerçaient qu’en milieu tempéré. Il va donc réaliser un exploit scientifique et logistique inédit : installer un observatoire permanent sur le Mont Blanc, à plus de 4.300 mètres d’altitude. En 1890, après de multiples ascensions et de minutieux repérages, il fait bâtir le fameux Observatoire Vallot. Transporté à dos d’hommes, de mules et de traîneaux, le matériel est hissé à travers la neige et les crevasses. Une folie, pour certains. Une révolution, pour l’histoire de la science. À cet observatoire, Vallot passe de longues semaines, parfois seul, pour mener des études sur la respiration humaine, la composition de l’air, la météorologie, la glaciologie, et même l’astronomie. Il observe comment l’organisme s’adapte à l’altitude, mesure la baisse de la pression atmosphérique, étudie les mouvements des glaciers… et note tout avec rigueur. Ses carnets sont de véritables trésors scientifiques. Mais ce n’est pas tout : il invente aussi du matériel pour la haute montagne, conçoit des tentes adaptées aux expéditions, et développe des méthodes de relevés topographiques en altitude. Sa passion ne s’arrête jamais. Joseph Vallot était un esprit universel. À une époque où la spécialisation scientifique devenait la norme, lui choisissait la transversalité. Sa contribution majeure ? Avoir démontré que la haute montagne n’est pas un désert scientifique, mais un espace d’observation privilégié pour comprendre notre planète. Il meurt en 1925, mais son héritage perdure : son observatoire existe encore, utilisé aujourd’hui par des chercheurs du monde entier. Joseph Vallot, en somme, a hissé la science à des sommets… au sens propre comme au figuré. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Quelle était l’espérance de vie d’un homme préhistorique ? 2:09
2:09
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:09
Quand on pense à la vie à la Préhistoire, on imagine souvent une existence brutale, courte, marquée par la chasse, les maladies et les dangers constants. Mais quelle était réellement l’espérance de vie des hommes préhistoriques ? Spoiler : c’est plus nuancé qu’on le croit. Selon une étude publiée en 2007 dans Proceedings of the National Academy of Sciences par Rachel Caspari et Sang-Hee Lee, les populations humaines ont connu une augmentation progressive de la longévité à partir du Paléolithique supérieur, il y a environ 30.000 ans. Les chercheurs ont analysé des crânes fossiles et ont constaté qu’au fil du temps, le nombre d’adultes âgés augmentait dans les populations humaines, signe d’une meilleure survie à l’âge adulte. Mais avant d’aller plus loin, précisons un point important : l’espérance de vie à la naissance est une moyenne, très influencée par la mortalité infantile. Chez les Homo sapiens du Paléolithique, elle était estimée entre 25 et 35 ans. Cela ne signifie pas que tous mouraient à 30 ans ! Cela veut plutôt dire qu’un grand nombre d’enfants mouraient avant 5 ans. Ceux qui atteignaient l’âge adulte pouvaient vivre jusque 50 ou même 60 ans, comme l’indiquent plusieurs restes squelettiques. Des travaux publiés en 2011 dans Nature par le paléoanthropologue Erik Trinkaus ont montré, en étudiant les fossiles de Néandertaliens et d’Homo sapiens, que la proportion d’individus âgés était assez comparable dans certaines régions au Paléolithique. Cela suggère que la survie à un âge avancé n’était pas aussi rare qu’on le croyait. Autre point crucial : le mode de vie. Les chasseurs-cueilleurs vivaient dans des groupes mobiles, exposés aux blessures, aux infections, mais aussi à des régimes alimentaires variés. Ce mode de vie, bien que difficile, pouvait parfois être plus sain que celui des premières sociétés agricoles, où la sédentarité, la promiscuité et la dépendance à une seule source alimentaire entraînaient malnutrition et maladies. Aujourd’hui encore, certaines sociétés de chasseurs-cueilleurs comme les Hadza en Tanzanie ou les Tsimané en Bolivie montrent que, malgré l’absence de médecine moderne, des individus peuvent atteindre 60 ou 70 ans si l’enfance est bien passée. En résumé, l’homme préhistorique n’était pas condamné à mourir jeune. La forte mortalité infantile tirait l’espérance de vie vers le bas, mais ceux qui passaient les premières années pouvaient vivre étonnamment longtemps. Alors non, nos ancêtres n’étaient pas tous des vieillards à 30 ans… bien au contraire ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Comment le “loup terrible” est-il revenu à la vie ? 2:18
2:18
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:18
Non, ce n’est pas un scénario de science-fiction. Et pourtant, en 2025, une start-up américaine de génie génétique, Colossal Biosciences, affirme avoir réussi l’impensable : ressusciter une créature disparue depuis des millénaires, le loup terrible ou Canis dirus. Ce prédateur emblématique de l’Amérique du Nord, plus massif que le loup gris et rendu célèbre par la série Game of Thrones, a disparu il y a plus de 10.000 ans. Mais trois petits louveteaux blancs, prénommés Remus, Romulus et Khaleesi, viennent tout juste de voir le jour en laboratoire. Alors… miracle ou manipulation ? Tout commence par une dent vieille de 13.000 ans et un fragment de crâne datant de 72.000 ans. Grâce à ces fossiles, les scientifiques ont pu extraire de l’ADN ancien, un exploit en soi. En comparant ce patrimoine génétique à celui du loup gris actuel, les chercheurs ont identifié les différences clés qui caractérisaient le loup terrible. Résultat : 20 modifications génétiques ont été apportées dans 14 gènes du loup gris. Ensuite, les cellules modifiées ont été clonées, puis implantées dans des ovules de chiens domestiques. Et ça a marché. Mais attention, ces animaux ne sont pas des copies exactes du Canis dirus. Comme le souligne la paléontologue Julie Meachen, ce sont des créatures nouvelles, génétiquement proches, mais pas identiques. L’objectif de Colossal n’est pas de recréer des espèces à 100 %, mais de produire des individus « fonctionnels », c’est-à-dire ressemblants, capables d’évoluer dans un environnement donné. Pourquoi faire cela ? Selon Colossal, il s’agit de repousser les limites de la biologie pour mieux préserver la biodiversité. En ressuscitant des espèces éteintes, ils espèrent aussi sauver celles qui sont en voie de disparition. Par exemple, ils ont déjà cloné quatre loups rouges, une espèce menacée. Et ils ambitionnent désormais de ramener à la vie le mammouth laineux d’ici 2028, ainsi que le dodo ou le tigre de Tasmanie. Mais ce projet fascine autant qu’il inquiète. Quel rôle joueraient ces nouveaux animaux dans nos écosystèmes ? Seront-ils vraiment utiles ? Ou risquent-ils de perturber des équilibres fragiles ? Le professeur Christopher Preston, spécialiste de philosophie environnementale, met en garde : « Il est difficile d’imaginer que des loups géants soient relâchés un jour dans la nature. » Finalement, la science montre ici qu’elle en est capable. Mais la grande question demeure : faut-il vraiment ressusciter le passé ? Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Pourquoi les voitures autonomes sont-elles classées de 0 à 5 ? 2:16
2:16
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:16
Les voitures autonomes sont souvent entourées de mystère et d’anticipation, mais elles répondent à une classification très rigoureuse : une échelle allant de 0 à 5. Cette échelle a été établie par la SAE International (Society of Automotive Engineers), afin de définir clairement les différents niveaux d’autonomie des véhicules. Pourquoi cette distinction est-elle si importante ? Parce qu’entre une voiture simplement équipée d’un régulateur de vitesse et un véhicule capable de se passer totalement de conducteur, il y a tout un monde ! Niveau 0 : aucune automatisation. À ce niveau, c’est le conducteur humain qui fait tout. Il peut y avoir des alertes ou des aides au freinage d’urgence, mais elles ne prennent pas le contrôle du véhicule. En gros, on est encore dans la voiture "classique". Niveau 1 : assistance au conducteur. Ici, certaines fonctions comme le régulateur de vitesse adaptatif ou l’assistance au maintien dans la voie peuvent aider, mais jamais en même temps. Le conducteur reste pleinement responsable de la conduite. Niveau 2 : automatisation partielle. C’est ce que l’on retrouve sur beaucoup de voitures modernes. Le véhicule peut gérer la direction et la vitesse simultanément, mais le conducteur doit garder les mains sur le volant et les yeux sur la route. Tesla, par exemple, propose ce niveau avec son "Autopilot". Niveau 3 : automatisation conditionnelle. Le véhicule peut conduire tout seul dans certaines situations – par exemple sur autoroute – et il est capable de surveiller l’environnement. Mais il doit pouvoir redonner le contrôle à l’humain en cas de besoin. À ce niveau, le conducteur peut brièvement détourner son attention… mais pas faire la sieste ! Niveau 4 : automatisation élevée. Ici, le véhicule peut se débrouiller tout seul dans des zones précises, appelées "zones géofencées", comme certains centres-villes ou campus. Pas besoin de conducteur du tout… tant qu’on reste dans les conditions prévues. Ce niveau est en test chez Waymo ou Cruise. Niveau 5 : automatisation complète. C’est le Graal : une voiture sans volant, sans pédales, sans conducteur. Elle pourrait fonctionner partout, à toute heure, sans intervention humaine. Mais ce niveau reste encore théorique aujourd’hui. Cette classification est essentielle pour établir des normes, fixer des responsabilités juridiques, et guider le développement technologique. Car derrière l’autonomie, se cachent des enjeux cruciaux : sécurité, éthique, urbanisme, emploi… Bref, ce n’est pas qu’une affaire de robots au volant, c’est un changement de civilisation en marche. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Comment les médecins du Moyen Age parvenaient-ils à leur diagnostic ? 2:53
2:53
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:53
Au Moyen Âge, l’uroscopie était l’un des outils médicaux les plus utilisés pour diagnostiquer les maladies. Pratiquée depuis l’Antiquité, cette méthode consistait à examiner l’urine du patient — sa couleur, son odeur, sa consistance, voire parfois son goût — afin de détecter des déséquilibres dans le corps. Bien qu’aujourd’hui considérée comme obsolète, l’uroscopie reposait sur une vision scientifique cohérente pour l’époque, fondée sur la théorie des humeurs. Le fondement théorique : la médecine humorale La médecine médiévale s’appuyait sur la doctrine des quatre humeurs, héritée de Hippocrate et Galien : sang, phlegme (ou lymphe), bile jaune et bile noire. Ces humeurs étaient censées réguler la santé physique et mentale. Un déséquilibre entre elles provoquait les maladies. L’urine était vue comme un reflet direct des humeurs internes, et donc un indicateur privilégié de l’état de santé. Les médecins pensaient que les organes filtraient les humeurs, et que l’urine en représentait le produit final. Analyser l’urine, c’était ainsi avoir accès à une sorte de "miroir du corps". L’uroscopie devenait alors un examen central dans le diagnostic médical. Une observation rigoureuse… mais limitée L’analyse de l’urine reposait sur plusieurs critères très codifiés. Les médecins observaient : La couleur : du blanc au noir, en passant par le jaune, le rouge ou le verdâtre, chaque teinte était associée à un trouble particulier. La clarté : une urine trouble ou opaque était suspecte. Les dépôts : des résidus au fond du flacon indiquaient une mauvaise "coction" (digestion des humeurs). L’odeur : jugée révélatrice d’excès de bile ou de pourriture interne. La texture : une urine "filante" ou trop épaisse était vue comme un mauvais signe. Et parfois, le goût (rarement pratiqué, mais mentionné dans certains traités). Les médecins utilisaient un flacon sphérique en verre transparent, souvent appelé matula, pour observer l’urine à la lumière du jour. Des tables d’uroscopie, illustrées de couleurs et de formes types, servaient de guide comparatif. Ces manuels, très répandus, faisaient partie intégrante de la formation médicale. Entre science et symbolisme L’uroscopie était considérée comme une méthode sérieuse et scientifique. Pourtant, elle avait ses limites : elle se fondait sur des observations empiriques non vérifiées expérimentalement, et sans lien réel avec la physiologie humaine telle que nous la comprenons aujourd’hui. Néanmoins, elle représentait une tentative méthodique d’objectiver les symptômes, à une époque où l’imagerie médicale n’existait pas. En résumé, l’uroscopie médiévale était un mélange de science pré-moderne, de symbolisme médical et d’observation empirique. Si elle nous paraît aujourd’hui dépassée, elle témoigne d’une volonté ancienne de comprendre le corps humain à travers les moyens disponibles. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 L’Homo erectus a-t-il disparu à cause de sa paresse ? 2:34
2:34
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:34
L’idée que l’Homo erectus aurait disparu à cause de sa paresse a fait grand bruit en 2018, à la suite d’une étude menée par une équipe d’archéologues australiens sur un site situé à Saffaqah, en Arabie Saoudite. Mais derrière ce titre accrocheur se cache une réalité bien plus nuancée et, surtout, scientifique. L’Homo erectus, espèce humaine ancienne apparue il y a environ 1,9 million d’années, a longtemps été vue comme une espèce pionnière : première à sortir d’Afrique, première à utiliser le feu, à fabriquer des outils bifaces perfectionnés, et à occuper des environnements variés. Cependant, les recherches menées à Saffaqah ont révélé un comportement surprenant : les Homo erectus locaux semblaient éviter les efforts inutiles, tant pour fabriquer leurs outils que pour exploiter les ressources de leur environnement. Des outils simples malgré des ressources meilleures à proximité Sur le site étudié, les chercheurs ont observé que les Homo erectus utilisaient des pierres de mauvaise qualité, disponibles localement, plutôt que de parcourir quelques kilomètres supplémentaires pour accéder à des roches bien meilleures pour la fabrication d’outils, comme le quartzite. En comparaison, d’autres espèces humaines, comme les Néandertaliens ou Homo sapiens, ont démontré une plus grande mobilité et une capacité à rechercher les meilleurs matériaux, même s’ils étaient éloignés. Un manque d’adaptation Ce comportement est interprété non pas comme de la "paresse" au sens moral du terme, mais comme un manque de flexibilité comportementale. L’Homo erectus semble avoir conservé des stratégies de subsistance simples et peu adaptatives, même lorsque les conditions environnementales devenaient plus arides ou plus contraignantes. Contrairement à Homo sapiens, il n’a pas su adapter ses pratiques face au changement climatique ou à la rareté des ressources. Ce manque d’innovation et de plasticité aurait limité sa capacité à coloniser de nouveaux territoires ou à faire face à des crises écologiques. Une extinction multifactorielle La disparition de l’Homo erectus, il y a environ 100 000 ans, est donc probablement le résultat de facteurs multiples : changements climatiques, concurrence avec d’autres espèces humaines plus évoluées (comme Homo sapiens), isolement géographique, et incapacité à innover ou à s’adapter rapidement. La "paresse" évoquée n’est qu’un symptôme comportemental, vu aujourd’hui par les scientifiques comme un indice de stagnation culturelle et technologique. En conclusion, l’Homo erectus n’a pas disparu parce qu’il était "fainéant", mais parce qu’il était moins réactif face aux défis de son environnement. Une leçon précieuse sur le rôle de l’innovation, de la mobilité et de l’adaptabilité dans la survie des espèces. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Quel est le plus gros séisme dans l'histoire de la France ? 1:46
1:46
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب1:46
Le plus gros séisme jamais enregistré en France métropolitaine a eu lieu le 11 juin 1909, près de la ville de Lambesc, dans le département des Bouches-du-Rhône, en région Provence-Alpes-Côte d’Azur. Ce tremblement de terre, connu sous le nom de séisme de Lambesc, est le plus puissant que la France ait connu depuis que les mesures sismologiques existent. Une magnitude de 6,2 Ce séisme a atteint une magnitude estimée à 6,2 sur l’échelle de Richter, ce qui en fait un événement majeur pour un pays comme la France, situé en zone de sismicité modérée. L’épicentre était situé à quelques kilomètres au nord-est d’Aix-en-Provence. À l’époque, les sismomètres étaient encore rudimentaires, mais les témoignages et les dégâts observés ont permis aux scientifiques modernes de reconstruire précisément sa puissance. Des dégâts humains et matériels importants Le tremblement de terre s’est produit vers 21 h 15. Il a été ressenti sur plus de 300 kilomètres à la ronde, jusqu’à Lyon au nord et Gênes à l’est. L’intensité maximale, évaluée à VIII sur l’échelle macrosismique européenne (EMS-98), indique des dégâts très importants dans les zones proches de l’épicentre. Le village de Rognes fut presque entièrement détruit. 46 personnes ont trouvé la mort, et plusieurs centaines d’habitants ont été blessés. De nombreux bâtiments, souvent en pierre et mal conçus pour résister aux secousses, se sont effondrés ou ont été gravement endommagés. Les chutes de pierres, les fissures dans le sol et les glissements de terrain ont également été signalés. Origine géologique Ce séisme s’explique par la géologie complexe de la région. La Provence est marquée par la convergence des plaques tectoniques africaine et eurasienne, bien que située loin de leur frontière directe. Cette pression tectonique engendre des failles actives dans le sous-sol, notamment la faille de la Trévaresse, responsable du séisme de 1909. Cette faille, longue de 20 km, a subi un glissement brutal ce jour-là, libérant une énorme quantité d’énergie. Un tournant pour la sismologie française Le séisme de Lambesc a marqué un tournant dans l’étude des tremblements de terre en France. Il a contribué à la création des premières cartes de zonage sismique, et à un intérêt renouvelé pour la surveillance géologique dans le sud du pays. Aujourd’hui, bien que des séismes plus faibles soient fréquents, aucun n’a égalé celui de 1909 en intensité et en impact humain. En résumé, le séisme de Lambesc reste un événement de référence en matière de risque sismique en France, rappelant que même loin des grandes zones de subduction, la Terre peut parfois trembler avec violence. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Quel est le “problème de la secrétaire” ? 2:40
2:40
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:40
Le “problème de la secrétaire”, aussi appelé problème du mariage ou problème du choix optimal, est un casse-tête mathématique fascinant qui illustre comment prendre la meilleure décision quand on n’a pas toutes les informations dès le départ. Il s’agit d’un exemple classique en théorie des probabilités et en prise de décision sous incertitude. Voici le scénario : vous devez embaucher une secrétaire (ou choisir un partenaire, un appartement, etc.). Vous interviewez un nombre connu de candidats, disons 100, un par un, dans un ordre aléatoire. Après chaque entretien, vous devez immédiatement décider oui ou non. Si vous refusez un candidat, vous ne pouvez pas revenir en arrière. L’objectif est de sélectionner le meilleur candidat parmi les 100. Comment maximiser vos chances de réussir ? La solution peut sembler contre-intuitive, mais elle a été prouvée mathématiquement. La stratégie optimale La méthode repose sur une règle simple appelée la règle des 37 %. Elle dit ceci : Commencez par rejeter automatiquement les 37 premiers candidats (environ 37 % de 100), sans en choisir aucun. Pendant cette phase, vous observez et mémorisez le meilleur candidat rencontré. Ensuite, continuez à interviewer les autres. Dès que vous tombez sur un candidat meilleur que tous ceux vus jusque-là, vous l’embauchez immédiatement. Cette stratégie vous donne environ 37 % de chances de choisir le meilleur candidat — ce qui est étonnamment élevé dans un processus basé sur le hasard. Ce résultat est tiré de calculs mathématiques précis, où la probabilité maximale d’obtenir le meilleur choix converge vers 1/e, soit environ 0,368, d’où la fameuse règle des 37 %. Pourquoi cela fonctionne-t-il ? Cette méthode crée un équilibre entre observation (pour établir un standard de qualité) et action (pour ne pas manquer une bonne opportunité). Rejeter les premiers candidats permet de calibrer votre jugement, de comprendre ce qu’est un “bon” candidat dans le contexte. Ensuite, dès qu’un profil dépasse ce standard, vous vous engagez, car statistiquement, vos chances de tomber sur mieux deviennent de plus en plus faibles. Une leçon plus large Ce problème a des applications bien au-delà des ressources humaines : choisir un appartement, un partenaire amoureux, une offre d’achat… Il s’applique chaque fois qu’il faut prendre une décision irréversible avec des options successives. La science nous montre ici qu’il y a une méthode rationnelle pour décider dans l’incertitude, même si cela reste probabiliste, et non une garantie absolue. Ainsi, derrière ce problème se cache une profonde leçon sur l’art de choisir : observer d’abord, puis agir vite — une stratégie aussi élégante que puissante. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Comment créer un .pdf plus grand que l'Univers ? 2:32
2:32
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:32
Créer un fichier plus grand que l’univers : cela semble absurde, voire impossible. Et pourtant, c’est précisément le défi qu’Alex Chan, un ingénieur logiciel britannique, a tenté de relever, avec une pointe d’humour mais aussi une solide démonstration des limites et bizarreries de l’informatique moderne. Tout commence par une idée un peu folle : peut-on créer un fichier informatique dont la taille dépasse celle de l’univers observable ? Pour situer, l’univers visible contiendrait environ 108010^{80} atomes. Un fichier de cette taille, en octets, serait donc littéralement inconcevable à stocker dans le monde réel. Mais Alex Chan ne cherche pas à le stocker… juste à le déclarer. Il utilise un format bien connu des informaticiens : le format ZIP. Les fichiers ZIP permettent de compresser des données, mais surtout, ils reposent sur une structure logique qui référence les fichiers contenus. En d’autres termes, on peut indiquer qu’un fichier compressé contient un fichier de plusieurs zettaoctets (ou plus), sans réellement inclure les données correspondantes. Cette astuce est connue sous le nom de "zip bomb", une forme d’attaque qui consiste à piéger un fichier compressé pour qu’il occupe une taille gigantesque une fois extrait, mettant ainsi à genoux les logiciels ou systèmes qui tentent de le lire. Mais Alex Chan pousse l’idée plus loin : il s’appuie sur les spécificités du format ZIP64, une extension du format ZIP qui permet de dépasser les limitations initiales de 4 Go par fichier. Grâce à une manipulation astucieuse des en-têtes ZIP (qui décrivent les tailles et emplacements des fichiers à l’intérieur de l’archive), il crée une structure vide mais déclarée comme contenant un fichier de 4,5 yottaoctets – soit plus que la quantité totale d’information pouvant être contenue par tous les atomes de l’univers. Techniquement, le fichier ne contient pratiquement rien. Il est extrêmement léger. Mais les métadonnées décrivent un fichier gigantesque, bien au-delà de ce que la physique pourrait permettre. C’est donc un exploit purement conceptuel : Alex Chan ne crée pas un fichier gigantesque, mais une sorte de "mensonge bien formaté". Il démontre ainsi que les systèmes informatiques peuvent être poussés dans leurs retranchements logiques, que les limites ne sont pas toujours physiques, mais parfois uniquement liées aux conventions des formats ou des logiciels. En somme, son défi est à la fois une blague geek, une leçon de conception logicielle, et un clin d’œil aux absurdités possibles dans l’univers numérique. Une preuve brillante qu’avec un peu d’imagination, même le vide peut peser plus lourd que l’univers. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 BONUS - Le libre arbitre existe-t-il vraiment ? 3:53
3:53
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب3:53
Et si vous n’étiez pas vraiment aux commandes de vos décisions ? Si vos choix, même les plus intimes, étaient en réalité déclenchés dans les coulisses de votre cerveau… avant même que vous en ayez conscience ? Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
C
Choses à Savoir SCIENCES


1 Comment les panneaux solaires convertissent-ils la lumière en électricité ? 2:38
2:38
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:38
Chaque jour, le Soleil inonde la Terre d’une énergie colossale. Les panneaux solaires, ou plus précisément panneaux photovoltaïques, sont conçus pour capturer cette énergie lumineuse et la convertir en électricité. Mais comment ce miracle technologique fonctionne-t-il, au juste ? Tout repose sur un phénomène physique : l’effet photovoltaïque, découvert en 1839 par le physicien français Alexandre Edmond Becquerel. Cet effet permet à certains matériaux de produire un courant électrique lorsqu’ils sont exposés à la lumière. Les panneaux solaires sont principalement composés de cellules photovoltaïques, généralement faites à base de silicium, un semi-conducteur abondant dans la croûte terrestre. Ces cellules sont organisées en fines couches de matériaux dopés, c’est-à-dire modifiés pour améliorer leur conductivité. Une cellule solaire standard possède deux couches de silicium : Une couche supérieure dopée au phosphore, appelée type N, riche en électrons. Une couche inférieure dopée au bore, appelée type P, qui contient des "trous", c’est-à-dire des emplacements prêts à recevoir des électrons. Lorsque la lumière du Soleil frappe la cellule, elle est constituée de particules d’énergie appelées photons. Si un photon possède assez d’énergie, il peut exciter un électron du silicium et le libérer de son atome. Cet électron se retrouve alors libre de se déplacer. C’est là qu’intervient la jonction P-N, située entre les deux couches dopées. Cette jonction crée un champ électrique interne qui pousse les électrons libérés dans une direction précise : vers la couche N. Simultanément, les "trous" migrent vers la couche P. Ce mouvement ordonné des charges constitue un courant électrique continu. Pour exploiter ce courant, des contacts métalliques sont placés sur le dessus et le dessous de la cellule. Le courant peut alors circuler dans un circuit externe — par exemple, alimenter une ampoule, charger une batterie ou injecter de l’énergie dans un réseau. Mais ce courant est continu (DC), alors que le réseau électrique fonctionne en alternatif (AC). On utilise donc un onduleur, qui convertit le courant produit en courant alternatif compatible avec nos équipements domestiques. Le rendement d’une cellule solaire classique se situe entre 15 % et 22 %, ce qui signifie qu’une fraction seulement de l’énergie lumineuse est transformée en électricité. Le reste est perdu sous forme de chaleur ou réfléchi. En résumé, les panneaux solaires transforment la lumière du Soleil en électricité grâce à l’effet photovoltaïque : des photons excitent des électrons dans du silicium, créant un courant électrique exploitable. Une technologie propre, silencieuse… et directement alimentée par notre étoile. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Comment générer de l’électricité grâce à la rotation terrestre ? 2:21
2:21
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:21
Le 19 mars 2025, une équipe de chercheurs américains a publié dans la revue Physical Review Research les résultats d'une expérience innovante démontrant la possibilité de générer de l'électricité en exploitant la rotation de la Terre à travers son propre champ magnétique. Cette avancée pourrait ouvrir la voie à une source d'énergie propre et inépuisable. Contexte théorique L'idée d'utiliser la rotation terrestre pour produire de l'électricité remonte au XIXᵉ siècle, notamment avec les travaux de Michael Faraday sur l'induction électromagnétique. Cependant, en raison de la nature uniforme du champ magnétique terrestre, les forces électriques induites par le mouvement d'un conducteur ont tendance à s'annuler, rendant la génération d'un courant continu difficile. En 2016, Christopher Chyba et son équipe ont renforcé cette conclusion en publiant une démonstration mathématique prouvant l'impossibilité du procédé. Toutefois, en réexaminant leurs hypothèses, les chercheurs ont identifié une exception : l'utilisation d'un matériau magnétique spécifique, façonné sous une forme cylindrique creuse, pourrait perturber localement la configuration du champ magnétique. Dispositif expérimental Pour tester cette hypothèse, les chercheurs ont conçu un cylindre creux en ferrite de manganèse-zinc, un matériau magnétique aux propriétés particulières. Ce cylindre a été orienté de manière à ce que son axe soit perpendiculaire à la fois à la vitesse de rotation de la Terre et au champ magnétique terrestre. Cette configuration permet d'optimiser l'interaction entre le dispositif et le champ magnétique terrestre. Résultats obtenus Les mesures effectuées ont révélé la génération d'une tension continue de quelques microvolts, conforme aux prédictions théoriques. Pour valider ces résultats, plusieurs contrôles ont été effectués : Orientation du cylindre : la tension mesurée atteint son maximum lorsque l'axe du cylindre est perpendiculaire à la vitesse de rotation terrestre et au champ magnétique, et s'annule lorsque le cylindre est parallèle à la vitesse de rotation. Structure du cylindre : un cylindre plein, contrairement au cylindre creux, ne génère aucune tension, confirmant l'importance de la géométrie du dispositif. Matériau utilisé : l'utilisation d'un matériau avec un nombre de Reynolds magnétique élevé ne produit pas de tension, soulignant le rôle crucial des propriétés magnétiques du matériau. Implications et perspectives Bien que la tension générée soit actuellement faible, cette expérience constitue une preuve de concept significative. Elle suggère que, sous certaines conditions, il est possible d'exploiter la rotation terrestre et son champ magnétique pour produire de l'électricité. Des recherches supplémentaires sont nécessaires pour explorer des moyens d'amplifier cette tension et d'évaluer la faisabilité d'une application à plus grande échelle. Cette découverte relance un débat scientifique vieux de près de deux siècles et ouvre de nouvelles perspectives pour le développement de sources d'énergie alternatives, propres et potentiellement illimitées. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Peut-on avoir une érection dans l'espace ? 2:24
2:24
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:24
C’est une question qu’on n’ose pas toujours poser… mais qui mérite une vraie réponse scientifique : que se passe-t-il pour le corps humain — et en particulier pour la sexualité — en apesanteur ? Est-il possible d’avoir une érection dans l’espace ? La réponse courte est : oui, mais avec des complications. Sur Terre, une érection est déclenchée par un afflux de sang dans les corps caverneux du pénis, sous le contrôle du système nerveux parasympathique. Ce processus dépend en grande partie de la gravité, qui aide le sang à affluer correctement dans les organes génitaux. Or, en microgravité, le sang se redistribue dans le haut du corps : visage, poitrine, tête. Les astronautes ont souvent le visage un peu gonflé et ressentent une pression dans le crâne. Résultat ? Le flux sanguin vers le bas du corps est réduit, ce qui peut rendre l’érection plus difficile à obtenir… et à maintenir. Cela dit, plusieurs astronautes ont rapporté des signes d'excitation spontanée en apesanteur, notamment pendant leur sommeil. Comme sur Terre, les érections nocturnes (liées au cycle du sommeil paradoxal) peuvent se produire, ce qui prouve que le mécanisme physiologique de base reste fonctionnel. Mais attention : dans l’espace, tout ce qui concerne l’intimité devient complexe. Il faut composer avec des combinaisons spatiales, un environnement confiné, l’absence de douche… et surtout, un manque total d’intimité. Les astronautes vivent et travaillent en permanence dans des modules partagés, souvent à deux ou trois, ce qui rend toute activité sexuelle discrète quasiment impossible. Par ailleurs, aucune agence spatiale n’a officiellement étudié les relations sexuelles dans l’espace. La NASA a toujours évité le sujet publiquement, et les missions sont organisées de façon à minimiser les risques de tension ou de distraction. En 1992, un mythe a circulé autour du vol STS-47, où un couple marié – Mark Lee et Jan Davis – aurait été le premier à tester le sexe dans l’espace. Mais la NASA a fermement nié toute expérience de ce type. D’un point de vue scientifique, des chercheurs se sont penchés sur la reproduction en microgravité, mais chez les animaux. Des études sur les rats ont montré que l’accouplement et la fécondation étaient difficiles en l’absence de gravité, notamment à cause de la désorientation posturale. En résumé, une érection dans l’espace est biologiquement possible, mais plus difficile qu’au sol. Et tant que les agences spatiales éviteront le sujet, notre compréhension des fonctions sexuelles humaines en orbite restera... en suspens. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
C
Choses à Savoir SCIENCES


1 Pourquoi est-il si compliqué de fabriquer des armes nucléaires ? 2:48
2:48
التشغيل لاحقا
التشغيل لاحقا
قوائم
إعجاب
احب2:48
Fabriquer une arme nucléaire, ce n’est pas simplement assembler des composants explosifs. C’est une des entreprises technologiques, scientifiques et industrielles les plus complexes jamais réalisées par l’être humain. La première grande difficulté, c’est la matière fissile. Deux substances peuvent être utilisées dans une bombe : l’uranium hautement enrichi (à plus de 90 % d’uranium 235) ou le plutonium 239. Or, dans la nature, l’uranium est présent à plus de 99 % sous forme d’uranium 238, inutile pour une bombe. Enrichir l’uranium, c’est donc séparer les isotopes, ce qui est extrêmement difficile. Les techniques d’enrichissement, comme la centrifugation gazeuse, demandent des infrastructures gigantesques, un contrôle précis, des matériaux résistants à des contraintes extrêmes, et surtout… du temps. C’est pourquoi la plupart des pays ne peuvent tout simplement pas le faire en secret. Deuxième option : le plutonium. Lui n’existe presque pas à l’état naturel. Il faut le produire dans un réacteur nucléaire spécifique, puis le séparer chimiquement du combustible irradié. Là encore, c’est une technologie très avancée, nécessitant des installations industrielles rares et surveillées. Ensuite vient le défi de l’implosion. Une bombe nucléaire ne se contente pas de faire exploser la matière fissile : il faut la comprimer de manière quasi parfaite, avec des explosifs classiques disposés autour du noyau fissile pour provoquer une réaction en chaîne. Ce système, appelé "détonateur à implosion", doit fonctionner à la microseconde près. Le moindre défaut, et l’arme ne fonctionne pas. Autre obstacle : la miniaturisation. Si une bombe nucléaire pèse plusieurs tonnes et ne peut pas être transportée efficacement, elle perd tout intérêt militaire. Les véritables puissances nucléaires maîtrisent la miniaturisation de leurs têtes nucléaires pour les placer sur des missiles balistiques. Cela nécessite une maîtrise avancée des matériaux, du design et des simulations nucléaires complexes. Enfin, il y a le secret et la non-prolifération. Le Traité sur la non-prolifération des armes nucléaires (TNP) limite très strictement l’accès aux technologies sensibles. De plus, les agences de renseignement internationales, comme l’AIEA, surveillent en permanence les installations suspectes. Bref, fabriquer une arme nucléaire, c’est réunir des compétences en physique nucléaire, en chimie, en ingénierie de précision, en explosifs, en logistique industrielle… tout en échappant à la surveillance internationale. C’est un véritable casse-tête technologique et politique. Et c’est précisément cette difficulté qui a permis, jusqu’à présent, de limiter le nombre de puissances nucléaires dans le monde. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.…
مرحبًا بك في مشغل أف ام!
يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.