Artwork

المحتوى المقدم من American Heart Association, Paul J. Wang, and MD. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة American Heart Association, Paul J. Wang, and MD أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.
Player FM - تطبيق بودكاست
انتقل إلى وضع عدم الاتصال باستخدام تطبيق Player FM !

Circulation: Arrhythmia and Electrophysiology April 2020 Issue

12:56
 
مشاركة
 

Manage episode 280242659 series 1452724
المحتوى المقدم من American Heart Association, Paul J. Wang, and MD. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة American Heart Association, Paul J. Wang, and MD أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Paul J. Wang:

Welcome to the monthly podcast On the Beat, for Circulation: Arrhythmia and Electrophysiology. I'm Dr. Paul Wang, Editor-in-Chief, with some of the key highlights from this month's issue.

In our first paper, David Okada and associates assess the ability of a novel machine learning approach for quantifying 3D spatial complexity of gray scale patterns on late gadolinium-enhanced cardiac magnetic resonance images to predict ventricular arrhythmias in patients with ischemic cardiomyopathy.

They examined 122 consecutive ischemic cardiomyopathy patients with left ventricular ejection fraction of 35%, without prior history of reentrant ventricular arrhythmias. These patients underwent late gadolinium-enhanced cardiac magnetic resonance imaging. From raw gray scale data, the authors generated graphs encoding the 3D geometry of the left ventricle. They then assess the global regularity of signal intensity patterns using Fourier-like analysis and generated a substrate spatial complexity profile for each patient. A machine learning statistical algorithm was employed to discern which substrate spatial complexity profiles correlated with ventricular arrhythmic events. That is appropriate ICD firings and arrhythmic sudden cardiac death.

At five years of follow-up from the statistical machine learning results, a complexity score ranging from zero to one was calculated for each patient that was tested using multivariate Cox regression models. At five years of follow-up, 40 patients had ventricular arrhythmia events. The machine learning algorithm classified with overall 81% accuracy and correctly classified 86% of those without ventricular arrhythmia. Overall negative predictive value was 91%. Average complexity score was significantly higher in patients with ventricular arrhythmia events versus those without P

  continue reading

42 حلقات

Artwork
iconمشاركة
 
Manage episode 280242659 series 1452724
المحتوى المقدم من American Heart Association, Paul J. Wang, and MD. يتم تحميل جميع محتويات البودكاست بما في ذلك الحلقات والرسومات وأوصاف البودكاست وتقديمها مباشرة بواسطة American Heart Association, Paul J. Wang, and MD أو شريك منصة البودكاست الخاص بهم. إذا كنت تعتقد أن شخصًا ما يستخدم عملك المحمي بحقوق الطبع والنشر دون إذنك، فيمكنك اتباع العملية الموضحة هنا https://ar.player.fm/legal.

Paul J. Wang:

Welcome to the monthly podcast On the Beat, for Circulation: Arrhythmia and Electrophysiology. I'm Dr. Paul Wang, Editor-in-Chief, with some of the key highlights from this month's issue.

In our first paper, David Okada and associates assess the ability of a novel machine learning approach for quantifying 3D spatial complexity of gray scale patterns on late gadolinium-enhanced cardiac magnetic resonance images to predict ventricular arrhythmias in patients with ischemic cardiomyopathy.

They examined 122 consecutive ischemic cardiomyopathy patients with left ventricular ejection fraction of 35%, without prior history of reentrant ventricular arrhythmias. These patients underwent late gadolinium-enhanced cardiac magnetic resonance imaging. From raw gray scale data, the authors generated graphs encoding the 3D geometry of the left ventricle. They then assess the global regularity of signal intensity patterns using Fourier-like analysis and generated a substrate spatial complexity profile for each patient. A machine learning statistical algorithm was employed to discern which substrate spatial complexity profiles correlated with ventricular arrhythmic events. That is appropriate ICD firings and arrhythmic sudden cardiac death.

At five years of follow-up from the statistical machine learning results, a complexity score ranging from zero to one was calculated for each patient that was tested using multivariate Cox regression models. At five years of follow-up, 40 patients had ventricular arrhythmia events. The machine learning algorithm classified with overall 81% accuracy and correctly classified 86% of those without ventricular arrhythmia. Overall negative predictive value was 91%. Average complexity score was significantly higher in patients with ventricular arrhythmia events versus those without P

  continue reading

42 حلقات

كل الحلقات

×
 
Loading …

مرحبًا بك في مشغل أف ام!

يقوم برنامج مشغل أف أم بمسح الويب للحصول على بودكاست عالية الجودة لتستمتع بها الآن. إنه أفضل تطبيق بودكاست ويعمل على أجهزة اندرويد والأيفون والويب. قم بالتسجيل لمزامنة الاشتراكات عبر الأجهزة.

 

دليل مرجعي سريع